

Automated Vulnerability Detection and Al Model Hardening

for Mission-Critical Environments

DISA TEM Presentation - May 1, 2025

© 2025 ObjectSecurity LLC - all rights reserved.

Agenda

- ObjectSecurity Company Introduction
- FortiLayer™ Introduction and Technical Demo
- BinLens™ Overview and Technical Demo
- Open Discussion and Q&A

Intro to Our Team

Ulrich Lang, PhD – Founder and CEO

Trevor Thomas – Lead Software Engineer

Stephen Brennan – AI/ML Researcher

Connor Forman – DoD Account Manager

ObjectSecurity Company Overview

We provide precision vulnerability detection for defense and critical infrastructure.

- Founded in 2000 (Dr. Lang PhD spinout UK, US 2009).
- R&D tech/product dev. \$10M+ gov't R&D funded, numerous patents, awards...
- For more than 20 years we've pioneered successes with DARPA, Office of Naval Research, and other DOD organizations in the following fields:

Binary Vulnerability Analysis	AI/ML Trust Analysis	5G Vulnerability Analysis	Supply Chain Risk Analysis	Zero Trust Access Policy Automation
BinLens™	3.2 Forti	iLayer™		
DARPA and ONR SBIR development	USAF P SBIR de	hase II evelopment		
▲Object .	-			

FortiLayer – Safeguards Your Al Models

- Automate deep security analysis of AI models to identify vulnerabilities and mitigate risks
- **Optimize** fine-tuning of models by enhancing accuracy and training speed, reducing time to deployment
- Rigorous performance, sensitivity, and robustness testing of AI/ML models

- **Rapid patching** of models to improve accuracy and mitigate security issues efficiently
- Layer-wise deep understanding of model internals and behavior with explainability analysis

5

FortiLayer – Optimizes AI Performance

Performance	Identifies specific architectural or pipeline-level slowdowns in training or inference Pinpoints performance choke points that could degrade real-time decision-making or lead to mission delays	
Accuracy	Evaluates how well the AI system meets its intended performance goals using standardized benchmarks	
	Ensures models used in mission-critical systems deliver reliable results under expected conditions (i.e. testing against custom datasets)	
Security	Tests resilience to unexpected, noisy, or malicious inputs (e.g. adversarial attacks, edge cases)	
	Highlights model architectural weaknesses for targeted correction	

FortiLayer – Builds Trustworthy Al

IP Compliance	Scans for copyright, license, and provenance metadata across source code, datasets, and trained models	
\bigcirc	Ensures compliance with open-source and proprietary content — reducing legal and supply chain risk in acquisitions or third-party reuse	
Explainability	Provides transparency into how the model makes decisions	
	Includes saliency maps, weak neuron analysis, and overfitting detection	
Compliance	Maps analysis results to compliance frameworks (e.g., NIST RMF, MITRE ATLAS)	
	Automatically generates reports for tracking dataset usage, model compliance scoring etc. for documentation	

Demo

BinLens[™] – Automate. Detect. Secure.

- BinLens helps vulnerability researchers, product security teams, and device buyers who need to find unpublished, potential zero-day vulnerabilities in binary code at a low-cost point.
- Automates key manual reverse engineering tasks like symbolic execution, disassembly, and decompilation to find potential vulnerabilities. Unlike traditional tools, it doesn't rely solely on known vulnerabilities (i.e. CVEs)
- Offers flexible deployment options for installation in air-gapped on-prem or cloudbased instances

Why Symbolic Execution Matters

- BinLens employs **symbolic execution** to explore, detect, and report vulnerable program states.
- Evaluate the behavior of the binary program, detecting memory safety violations and other undefined behaviors with a level of precision traditional tools cannot match.

BinLens outperforms solutions that:

- require source code to detect vulnerabilities
- only scan network traffic
- detect known, published vulnerabilities
- needs connectivity to internet, cannot be used by Defense or Intel Agencies
- produce high false-positive rates
- are manual/expensive/slow

BinLens – Operational Benefits

Risk Reduction	Identifies <i>unpublished</i> vulnerabilities (zero-days) in compiled binaries — not just known CVEs			
	Traditional tools rely on SBOMs and known-vuln databases; BinLens detects novel logic flaws and misuses the static tools aren't designed to catch			
	Impact: Reduces operational risk from inherited third-party or contractor- supplied software/firmware			
Time Savings	Automates deep binary analysis that would take hours or days manually			
C	Symbolic execution replaces the need for manual reverse engineering			
	Typical findings surface in minutes-to-hours versus days			
	Impact: Faster triage and decision-making for red teams, ATO approvals, and procurement teams validating vendor software			

BinLens – Resource Optimization

Lower Analyst Effort	Low false-positives, automatically prioritizes and explains issues at the function-level			
Z	No need to correlate raw disassembly with vulnerability patterns			
70	Clear outputs: CWE tags, function call chains, paths to execution			
	Impact: Less time spent by analysts reviewing noise or duplicating work across teams			
Cost	Reduces need for highly specialized reverse engineering talent on every project			
Efficiency	Enables junior analysts or generalists to perform deeper assessments			
K	Reduces over-reliance on scarce, expensive SME hours			
	Impact: Greater capability without growing the headcount or expensive Pen Test contracts			

BinLens – Enterprise Readiness

Operational Integration	API integration into existing CI/CD pipelines seamlessly			
	Works with air-gapped or classified systems			
	Exports to Ghidra, Splunk, dashboards, JSON for ticketing			
	Impact: Analysis becomes part of the process, not a one-off			
Scalable Use	Supports many architectures — from embedded firmware to complex ELF/PE applications			
	No source code required, can be used across different mission environments (ground, air, space, or maritime systems)			
	Impact: Broad applicability without major customization per platform			
Compliance & Governance	Helps teams meet latest NIST guidance, software supply chain mandates, and supports SBOM validation			
	Supports mission-critical software assurance and ATO documentation			
	Impact: Easier to pass audits and support Red Team reviews, while maintaining accountability and security for inherited code			
	© 2025 ObjectSecurity LLC – all rights reserved. 13			

Demo

Key Takeaways

Build trust into AI Models

- Identify vulnerabilities and performance bottlenecks in AI models
- Accelerate safe deployment with explainability, accuracy, and IP compliance

Secure binaries without source code

- Detect unpublished vulnerabilities in firmware and binaries, automate deep reverse engineering with symbolic execution
- Support Red Teams, DevSecOps and CI/CD pipelines, and Threat Hunters operating across security levels
- Available on Tradewinds and Platform One Solutions Marketplaces today

15

Thank You

Trevor Thomas trevor@objectsecurity.com

Stephen Brennan stephen@objectsecurity.com

Connor Forman connor@objectsecurity.com

For more information, please connect with us at: objectsecurity.com/contact

