
SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Architecture-Driven
Software Modernization
Documentation, Transformation & Refactoring

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Mission

Through technical ingenuity, dedication, and collaboration, we automate the

modernization of high-value software, advancing organizations into a better business

and technology reality.

Creating a world where organizations aren’t limited by technology.

Vision

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

About TSRI

Headquartered in Kirkland, WA

− Offices in Tucson, AZ and Washington, DC

Over 250+ Automated Modernization Projects since 2000

− Customer Satisfaction and Reference Accounts

− Award-Winning Technology Including Stevens Award in 2011

Technology Rooted in Early Artificial Intelligence Projects

− 1988 - 1994 Boeing Artificial Intelligence Lab

− 1983 USAF Knowledge Based Software Assistance (KBSA) Program

Member of the Object Management Group (OMG) Architecture-Driven Modernization (ADM) Task Force

− Author of Generic Abstract Syntax Tree Meta-Modeling (GASTM) Standard (adopted 2009),

− Author of Structured Patterns Meta-Model Standard (adopted 2015)

− Philip Newcomb:

• Chair of Architecture Driven Modernization Task Force (ADMTF)

• Author of Information Systems Modernization: Architecture Driven Modernization Case Studies , 2010

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Customers

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Featured Projects
Software Application Source Target LOC Total Time

TOPSKY – EUROCAT Air Traffic Management Systems Ada Java & C++ 638k 9 Months

Amdocs - Sprint Billing System Micro Focus COBOL C 5.1M 7 Months

United States Air Force AFLCMC - SBSS ILS-S Logistics System Unisys COBOL Java 1.3M 10 Months

House & Urban Development (HUD) – CHUMS, F42d, CAIVRS, LOCCS Unisys COBOL Java 1.5M 10 Months

Boeing - Internal Billing Systems – PCOS, IBAS, FSIT IBM COBOL & JCL C# & Python 3.8M 11 Months

International Clothing Retailer – Documentation & Modernization IBM COBOL & JCL C# & Python 1.2M 6 Months

HCSC BlueCross BlueShield - Healthcare Provider System PowerBuilder, MagnaX Java 1.2M 3 Months

Naval Undersea Warfare Center - Weapons Control System (WCS) Ada C++ 800k 7 Months

Core Automated Maintenance System (CAMS) IBM COBOL Document & BRE 1.0M 6 Months

Korean Air Force - F-16 Heads Up Display & Avionics Jovial C++ 500k 6 Months

Boeing - Wiring System (WIRS) IMS COBOL & JCL C++ & Python 1.3M 12 Months

US Navy R-Supply Module, NTCSS System PowerBuilder Java 700k 12 Months

Veteran’s Health Administration Fileman, WorldVistA & OpenVistA MUMPS Java 2.5M 6 Months

US Air Force Joint Mission Planning System (JMPS) VB6 C# 776k 9 Months

Ballistic Missile Early Warning System – COBRA DANE Ada & Fortran C++ 380k 8 Months

Oregon Public Employee Retirement System (OPERS) IBM COBOL & JCL C# & Python 250k 4 Months

Advanced Field Artillery Tactical Data System (AFATDS) Ada Java 5.5M 9 Months

Danish Government Digital Infrastructure Modernization PL/1 & JCL C# & Python 750k 12 Months*

Hundreds of Other Successful Projects Completed 35+ Source Languages 11+ Targets 1+ Billion Fast!

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Modernization Method – Formal Methods AI

SOURCE

Ada

Assembly

C, C#, C++

COBOL

CA Ideal

Fortran

Java

JCL/DCL

MUMPS

NATURAL

PL/1, PL/SQL

PowerBuilder

Visual Basic 6

+ 30 Others

DATABASES

Flat file

Relational

Hierarchical

+Others

TARGET

LANGUAGES

Java, C#, C++

+Others

DATABASES

DB2, PostgreSQL,

Oracle, SQL Server,

NoSQL, Distributed

+Others

ENVIRONMENTS

Linux, AWS, Azure,

RTOS, Mainframe, Unix

+Others

CLOUD

On-Prem, Hybrid,

AWS, Azure, Oracle,

GCP, OpenShift

+Others

JANUS Studio®

Transform Document

Refactor
Test, Integrate

& Deploy

TSRI INGESTS:

• Multiple Languages

• All Source Code &

Comments

• Databases, DDLs

• User Interface/Screens

• Monolithic & Thick-

Client Architectures

TSRI EMITS:

• Native & OO Code

• Unified Codebase

• Modern Databases/DDL

• Modern User Interface

• Multi-Tier & Thin Apps

• Cloud Architectures

• Micro-Services

Intermediate Object Model

Application

Blueprint®

Document

As-Is

Transformation

Blueprint®

Document

To-Be

Our solution is flexible & feedback-driven to achieve the best possible output. All change is iterative & accomplished by transformation & refactoring rules applied to models.

Assessment, Documentation, Transformation & Refactoring are done at 99.9X% automation with the lowest risk & minimal business disruption.

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Modernization Phases

Automated Test Instrumentation

COMPLIMENTARY FIXED PRICE TIME + MATERIALS

JANUS Studio®
Setup

Application Blueprint®
Transformation Blueprint®

Internal/External
Dependency Analysis

Target Architecture
Design & Planning

Workshop

Architecture Design
Inputs & Feedback

Next Sprint
Spiral of Code/Deltas

Specification &
Feedback Changes

Testing &
Defect Isolation

User Interface
Transformation

Semi-Automated &
Custom Refactoring

User Acceptance Testing,
Integration, Defect Resolution

Incremental Deployment

Go-Live

PARTNER
+

TSRI

CLIENT

Reintegrate Stubbed-Out Calls

Transformation to Compiling Integration-Ready Code
+ Framework Code Development

Code & Functionality Review

Test Support
Defect Remediation
Deployment Support

Go-Live Support

Final Deployment

Application Blueprint®
Transformation Blueprint®

Preview

Proposal
RACI
Price

Schedule

Technical
Project Review

Meeting

Go-Forward
Decision

Database
Transformation

Refactoring Workshop

Automated & Architecture Refactoring

PHASE 2
Assessment

PHASE 5
Deployment

PHASE 3
Transformation

PHASE 4
Refactoring

PHASE 1
Pre-Project

Roles

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

TSRI Technology and Process

JRGEN is TSRI’s Rule-Based Transformation Engine
Matches patterns & transforms source code AST models to target code models

JRGEN

Constrainer

Legacy

Source
Files

Code

Lexer &
Parser

Legacy

AST

Legacy2IOM

Rules

Automatic

Refactoring
For Target

IOM

AST
IOM2Target

Rules

Target

AST

Code

Formatter
Printer

Modern

IDE/SDK

Target

Source
Files

Modern

OS/HW/DB

JPGEN is TSRI’s Grammar Specification Engine
Parses code, generates models (ASTs), prints & formats code from ASTs

JPGEN

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Increase resilience, agility,

and scalability

Using TSRI’s proven, automated,

and flexible modernization
solutions,

our customers:

• Increase Business Agility

• Reduce TCO and O&M

• Rapidly Realize Business Goals

Assessment, Discovery,

& Documentation

Code, UI, & Database

Migration to the Cloud

Reduce risk and rapidly

realize business goals

99.9X% Automated

Modernization

Improve code quality,

maintainability, readability
performance, and security

Automated Code

Refactoring

Deploy containerized

cloud-native applications

Iterative, Architecture, &

Model-Driven Approach

Quickly realize ROI, with

minimal business
disruption

Accelerated

Modernization Journey

Modernization Automated. Business Goals Accelerated.

Gain insights into code

and reduce O&M costs

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

TSRI Automated Code Level Documentation

• HTML Based Documentation Included with Project
• Application Blueprint® - “As-Is” Documentation of

Source Code with Charts and Graphs

• Transformation Blueprint® - “To-Be” Side-by-Side,

Hyperlinking Source Code & Target Code

• Structure & Data Flow
• Control Flow & Cause Effect Models

• Complexity Analysis

• External Interfaces Called

• Dead & Redundant Code Analysis

• Similar & Identical Code Analysis

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Air Force Lifecycle Management Center Legacy Screens

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Mainframe to Cloud Demonstration
Migration Legacy Cloud Version

OS z/OS RHEL 6.5

Hardware IBM Mainframe EC2 T2.medium

or T2.large

Web Server N/A Java 8 Tomcat 1.8

Apache 2.0

Database IBM DB2 Amazon MySQL 5.7

DNS N/A DNS

Code COBOL Java 8.0

GUI 3270

Greenscreen

TypeScript 2.0

HTML5 5.0

CSS3 3.0

Bootstrap 3.0

Cloud Architecture Target Options:

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Example UI Modernization

Legacy 3270 React.js or Angular.js

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

TSRI Automated Refactoring

Starts the Reengineering of Target Components

− Automatic Refactoring

• Removes dead and redundant code and data

− Semi-automatic Refactoring

• Merges and consolidates duplicate code and data

• Reorganizes and improves design of code and data

• Removes “As-Is” flaws from “To-Be” software

Creates reusable components for:

− Optimization, packaging, and redistribution

− Micro-services, Rest calls & reusable services

− Integration into/with modern

• Parallel

• Multi-processor

• Distributed Environments & Databases

• N-Tier operational environments

Refactoring Benefits

• Improves software
maintainability

• Reduces Maintenance &
Operating Costs

• Enhances software
performance

• Supports component-based
reusability

• Supports consolidation of
“Stove-Pipe” systems

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Semi-Automated & Custom Refactoring Examples

CODE

• Dead & Unused Code Elimination

• Commenting & Marking Operations

• User Guided & Automated Refactoring to

Modularize Design

• Rename All References To Identifiers Across

Program Class, Method, Field, Variables & Import

• Automated Modularization Based On Entry

points & Call-tree

• Any User-specified Package, Class, Method,

Variable Or

• Reduce Number Of Formal Parameters:

• Package Multiple Formal Parameters Into A Class

• Define Default-value Instances For Classes &

Merge Into Class Constructors

• Convert Global Variables Into Class Data

Members Referenced As Member Data Or Pass

As Function Arguments

• Create Accessor Methods For Data Members

• Replace Direct Data References With Data

• Replace User-defined Types With Native Built-in

Types

• Minimize Class Member Visibility

• Make Method/Field Private Instead Of Public

FUNCTION

• Merge And Consolidate Redundant &

Duplicate Code, Classes, Methods & Code

Blocks

• Consolidate Similar Statements, Classes,

Types, Methods & Data Members

• Merge Similar Code Blocks, Code

Statement Slices Into Methods:

• Extract Dissimilarities (Literals & Variables) To

Parameters Of Methods

• Create Methods From Heuristically-Specific

Code Slices

• Generate New Classes As Directed By

Heuristic

• Functions Or Re-factoring Plan

• Extract-related Statements Detected By

• Code Pattern Analysis

• Evolve Code, Function & Architecture via

Iterative Re-factoring

• Carry Out 3rd Party Refactoring Plans &

Specifications

ARCHITECTURE

• Generate New Class Hierarchy

• Re-componentize Classes & Packages To Improve

Coupling & Cohesion, & Segregate Business From

Technical Logic

• Extract Subclasses From Superclass

• Consolidate Superclass From Similar Subclasses

• Move Classes Between Packages to Create More

Modular Code

• Move Members (Method Or Field) Between Classes to

Create More Functionally Cohesive Code

• Re-factor Derived Component Architecture Layers To

Segregate Client-side Web-browser & Ui Code from

• Server-side Data Manipulation & Access Code

• Generate Multi-tier Application Architecture

• Separate High-level Business Logic From Client-side

Presentation & Low-Level Db Definition &

Manipulation

• SOA and Web-enablement Refactoring

• Create Flexible & Extensible Components To Support

Future Enhancements

• Consolidate Code into Reusable Component

Oriented Refactoring.

• Introduce SOA And Web-enablement Refactoring.

• Re-architect And Redesign

• Create Microservices

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Redesigning & Reengineering IT Architectures

N-TIER ARCHITECTURE

• Extract Horizontal Services

• Data Access Layers:

 File Descriptors Converted Into Data Layer Classes

• I/O Statements (SQL or I/O) Converted Into

Method Of Data Layer Classes

▪ User Interface Layers: Screens Converted Into

Display Layer Classes Screen Statements

Converted Into Methods Of Display Layer Classes

WEB & MICRO SERVICE

• SOAP, WSDL, UDDI, XML-RPC, UBR, XHTML,

JavaScript
• Microsoft Azure/.NET

• LAMP, IBM Bluemix

• AWS

• WebSphere, Sun JES

• Construction of SOA Services

• Construction of SOA Interfaces

TARGET FRAMEWORK

• Component Oriented Refactoring

• Map to JEE Components

• (JDBC, JSP, JavaScript, HTML)

• Map to Microsoft .NET Components (ADO, ASP)

• Map to GCSS Component Framework

• Map to NNCI Component Framework

• Map to Angular, Spring Framework

• Map to Modular Open Architectures

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

TSRI Continuous Improvements
Continuous Integration and innovation in DevOps Transformation Innovation:

• Integration of multiple technologies and tools

• Support for automated

 scripting (Jenkins)

• Support for Automated

 testing

• Adoption of Best of Class

 tools and process

 (BitBucket, Agile, Jira, Sprint/Kanban)

• DevOPS
• CodePipeline, CodeBuild, Code Deploy

• Remote merging and

 integration – Container

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Test Process:
Test Planning

− Identify All Test Areas
• Review current AS-IS test assets

• Categorize new vs transformed code, assess risk

• Functional Equivalence Testing, As-Is comparative To-Be test

• Framework and new content test cases

− Most Tests Methods understood, automation everywhere possible
• Often limited by docs and key SME availability.

− Tests Planned and Tasks defined, scheduled and aligned with project

Test Execution
− Baseline on legacy compare Functional Equivalence in target. TSRI Batch test orchestration framework

− UI Automated with Selenium

− API testing when applicable, Live Record and Playback in test

− JUnit, Python Unit Test framework, test automation development. TSRI JANUS meta data for test cases Code

quality - SonarQube

− Track progress with test templates and in JIRA

Experience & Partnership in System Test
− Performance testing, Scalability/Load

− Third party Security Vulnerability

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Testing Considerations with Automated Modernization
• Level of Test Required is Different from typical Enterprise App Dev

– Transformation code is a direct representation from a language neutral and independent
object model sourced for legacy language.

– Generated w/ automated process so eliminates random implementation errors

– There are no changes in design or business logic

• Changes can introduce issues
– Modifications to target source may breaks representation/linkage to the original legacy

source.

• Black box testing is more appropriate
– White box and case/procedural instrumentation/testing can inject differences

– Leverage existing Selenium automated client software testing

– Combination of several black box approaches most demanding/best coverage

• Transformation is to be used for testability
– Automation of Equivalence partitioning, testing

– COBOL telemetry instrumentation source and target analysis

– Interface between COBOL and JCL for improved unit and system testability

– API level testing record and playback

– Instrumentation of SQL instruments integration/migration issues

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Testing: Plan, Execute, Report
• Test Planning

– Identify All Test Areas

– Review current AS-IS test assets

– Categorize new vs transformed code, assess risk

– As-Is comparative To-Be test

– Framework and new content test cases

– Tests Methods understood, automation everywhere possible

– Identify limitation of docs and key SME availability.

– Tests Planned and Tasks defined, scheduled and aligned with project

• Test Execution
– UI Automated with Selenium

– API testing when applicable, Live Record and Playback in test

– NUnit, Python UnitTest test framework development and experiences

– Robotest or custom Python scripts

– Comparative Testing

– Track progress in JIRA

– Third Party Collaboration
• Performance testing, Scalability/Load

• Third party Security Scans and Testing

• Report, Monitor against Key Objects

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Testing: Automation

Automated test procedures write, execute review

- Unit tests

- Selenium

- Postman test tool used for initial releases

- Python Test Scripts

Benefits

- Instantaneous test results for each software delivery

- No dedicated personnel required to perform testing manually

- Removes testing errors in performing manual tests

- Ensures consistent, repeatable tests steps for multiple environments and instantiations

- All code delivered to CM was automatically tested including full regression testing

- Each release verified through full automated test steps including full regression testing

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Business Case - Actual Customer Example

$0

$500,000

$1,000,000

$1,500,000

$2,000,000

$2,500,000

$3,000,000

$3,500,000

OPEX
Mainframe

OPEX Y1 OPEX Y2 OPEX Y3 OPEX Y4 OPEX Y5 OPEX Y6 OPEX Y7

Financial Analysis – Modernization of Medium-Sized Mainframe

System

OPEX Cost Project CAPEX OPEX Savings

Project Summary: TSRI
modernized a medium-sized
mainframe system for a
European government
system used by over 11

million people. TSRI
completed transformation to
a modern cloud-enabled
target, automated
documentation, refactoring,

and also completed
automated functional,
behavioral, and other
testing.

Project Length: 1 Year

Total Project Cost: $3.5M

Savings (7 Years): $11.2M

ROI Achieved: 21 Months

Customer eliminated legacy technical debt, achieved OPEX savings of greater than $2.1 million per year versus prior mainframe

operations (ROI within 21 months), and moved system to a flexible, maintainable modern architecture.

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

TSRI Capabilities

- Modernization of Legacy Systems to Customer Choice of Multi-Tier Architectures
− Targets Native, Object-Oriented, License Fee-Free Code

− Targets All Major Modern Languages

- Modernization of Flat File, Hierarchical, and Other Legacy Databases
− Targets Any Modern Database, DAO Layer

- Modernization of Legacy User Interface (UI) to Web or Other Modern UI

- Documentation including “As-Is” and “To-Be” Documentation

- Refactoring to Improve Maintainability, Security, Performance, or Other

- Custom Pattern-Based Changes

- Migration to Modern Cloud Architectures
− Target AWS, Cloud Foundry, Azure, Bluemix, OpenStack, Milcloud or Others

− Including SOA and Microservices Architectures, RESTful Interfaces, and Containers

- Testing & Integration Support Solutions
− Test Telemetry Injection to Support Functional Testing

Code
Baseline

Like for Like
Transform &
Document

Refactor,
Remediate
& Enhance

Test,
Integrate &

Deploy

Agile

Iterative

Flexible

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

List of Source & Target Technologies for Automated Conversion
Source Languages
Ada
Assembly (HLASM, BAL)
Basic

C, C#, C++
CICS
CA-IDEAL
COBOL (many dialects)
COOLGEN & Other Generators

Dec Basic
EasyTrieve
Fortran
Java
JCL, DCL, Other Control Lang.

Jovial
MagnaX
MUMPS
Natural

PL/1
PL/SQL
PowerBuilder
Progress 4GL
RPG
Rust

SQL
VAX Basic
Visual Basic 6

Legacy Databases
Flat File Databases
Hierarchical Databases
Relational Databases

ISAM
VSAM
IMS
DB2

SQL
Sybase
Adabas
+ Other Databases

Stored Procedures
Triggers
Views

Legacy UI & Screens
BMS Maps
MFS Screens
Data Windows
Conversational

Pseudo-Conversational
CICS
In-lined Screen Code
+ Others UI Elements

Target Languages
C
C#
C++

Java
Java J2EE
Java J2SE
Angular
TypeScript

HTML5
EGL
VB.NET
PL/SQL
Python

Rust
+ Other Languages

Target Databases
Microsoft SQL Server

Oracle
PostgreSQL
MariaDB
MongoDB
NoSQL

Aurora
Distributed Databases
+ Other Databases

Target Platforms & Architectures
Multi-Tier,
Thin-Client Architectures,
DAO layer,

UI/Presentation layer,
Application layer,

Modern Frameworks :
Bootstrap,

HTML5,
CSS3,
Angular,
React,
Google Guice,

Google Closure

Web-Enablement
Cloud-Enablement

Fully Automated Introduction of:
RESTful interfaces,
Micro-Services
Cloud Architectures (AWS, On-Prem &
Hybrid Clouds)

Cloud Native (AWS & TSRI services)

Mobile Enablement & Big Data

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Automation Levels Across Languages

COBOL Source, Java Emissions, Java Emission Modified in Delivery (Pre-Refactoring)

Application 1:
COBOL LOC: 79,933
Java LOC: 120,656

Hand Modified LOC: 384
384/120,656 = .003 99.97%

Applications 4+ beyond: 99.9997%+ Automation with Minimal Adaptation

Why is Automation Important and What Are the Benefits of an Automated Modernization?

− Reduced Overall Budget, ~80% savings of TCO, Resource Availability & Cost of Resources

− Accelerated Schedule, Faster Time-to-Market/Deployment, Increased Agility to Market Needs
− Rapid & Iterative Process to Customer Specifications to improve code quality & maintainability

− Reuse of Transformation & Refactoring on Application Portfolios with Similar Technologies

− Significantly Fewer Defects/Errors (<1 defect every 20,000 LOC – covered under Warranty)

− Average Code, Database & UI transformation completed in 3-4 months

− Automated code refactoring accelerates manual improvements across millions of lines of code

Application 2:
COBOL LOC: 361,385

Java LOC: 510,996
Hand Modified LOC: 34
34/510,996 = .00006 99.994%

Application 3:
PL/1 LOC: 785,215

C# LOC: 798,899
Hand Modified LOC: 3
3/785,215 = .00002 99.998%

Application 4:
MUMPS LOC: 3,928,813

Java LOC: 4,229,274
Hand Modified LOC: 4167
4,167/4,229,274 = .000572 99.902%

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Quality Refactoring: COBOL to Java

• Continuous & iterative refactoring improves vulnerabilities & maintainability

• Rules are applied to address the entire codebase & reused on subsequent applications

• Automation saves time, money, & resources by achieving improvements in a few minutes, what

would take thousands of hours while reducing technical debt

 Banking customer example below with 24,500 ($1,225,000) hours of technical debt:

<23 hours of

refactoring

Iteration 1

Iteration 2

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Python – Emissions Quality and Progress

Initial python emissions were very good,

and still are.

- No Bugs or Vulnerabilities

The strength of the JCL to Python transform
has remained excellent since project start

- Very small amounts of debt

Note: Bugs, smells and debt fluctuate as a

result of refactoring

- TSRI will continue to review with DB to

support practical resolutions

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

USAF Standard Base Supply System (SBSS) ILS-S
Program Description

• Integrated Logistic System

• Utilized by the United States Air Force, Air Force

reserve, and Air National Guard.

• Mission critical system used by 18,000 users.

• Used at 260 locations.

• 54-year-old system written in legacy languages and

on decaying technology.

• $30B of USAF inventory tracked through SBSS system.

• Operating expenses of $16.5M+

Program Approach

• Approximately 1.5M LOC COBOL and C
Transformed to Java using automation.

• Utilized the OMG® GASTM and UML Standards.

• Completed ahead of schedule, under budget.

• Included move to cloud, big data, mobile release.

• Modern Web application, reduced O&M cost,

increased availability/faster time to market.

Key Accomplishments/Status

• Containerized deployment on USAF Cloud One AWS
GovCloud.

• Transformed 100% of the code using 99.97% automation.

• $25M hosting cost reduction & savings to $3M TCO per year

• Less than 1 defect per 21,000 LOC – covered under warranty.

• Identical record and DAO method consolidation.

• Rearchitected to AWS cloud allowing for disaster recovery and
AWS services.

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

HUD Unisys COBOL to Java Modernization Factory
Program Description

• TSRI & Partners modernized 4 major HUD applications
over the course of 2 years.

• First major modernization out of the MGT Act as part of
the TMF Funding.

• Last remaining applications at HUD on the Unisys

mainframe

• Aged system written in Unisys COBOL & on decaying
technology.

• Extremely high visibility at the GAO & Federal
government levels.

Program Approach

• Approximately 1,700,000 LOC Unisys 2200 COBOL
Transformed to Java (over 4 applications) using model-

driven automation, refactoring & documentation.

• Completed ahead of schedule, under budget.

• Intensive refactoring to adhere to coding standards

(PMD/Checkstyle).

• Increased efficiency, automation, and accuracy in
each subsequent application (factory approach
through 4 applications).

• Continued support through TSRI Support & Maintenance

Agreement (SMA).

Key Accomplishments/Status

• Transformed using 99.98% automation.

• All 4 applications through transformation phase in the first

year.

• Copybook and DAO method consolidation.

• 4 of 4 applications now in production as of July 2021 &

December 2021.

• Deployed with .NET Core on Microsoft Azure Cloud
*Media resources: Fed. News 2021 // Fed. News 2020 // Fed.

News 2019*

https://federalnewsnetwork.com/reporters-notebook-jason-miller/2021/04/omb-opm-to-set-up-new-hiring-assessment-line-of-business-as-part-of-it-modernization-push/
https://federalnewsnetwork.com/reporters-notebook-jason-miller/2020/11/department-of-housing-and-urban-development-mainframe-migration/
https://federalnewsnetwork.com/technology-main/2019/11/hud-pays-back-tech-modernization-fund-after-seeing-return-on-investment/
https://federalnewsnetwork.com/technology-main/2019/11/hud-pays-back-tech-modernization-fund-after-seeing-return-on-investment/

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

USAF Reliability & Maintainability Information System (REMIS)
Program Description

• Utilized by the United States Air Force Technical
maintenance teams and its contractors.

• 250,000 daily users

• Aging and critical data system for reporting the entire
USAF equipment inventory.

• Re-modernize a system transformed from COBOL to C++

to COBOL and C++ to Java.

• Little to no documentation or understanding of the

system.
Program Approach

• 3.1M LOC COBOL and C++ transformed to modern Java.

• Utilized the OMG® GASTM and UML Standards.

• Documentation produced to reduce maintenance

effort.

• Create a modern and maintainable system on reliable

infrastructure.

• Integration into the Global Combat Support System
framework.

Key Accomplishments/Status

• Transformed using near 100% automation.

• Project completed 2 months early, $449,000 under

budget.

• Deployed at more than 1,000 Air Force sites
worldwide

• Reduced O&M cost by 60%, enabled use of less

expensive resources & less expensive infrastructure.

• Second full modernization of REMIS system by TSRI

in 10 years.

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

US Navy PMW150 – (NTCSS System): PowerBuilder to Java
Program Description

• Utilized by the United States Navy and its contractors.

• Influential to Pentagon level leadership and decision

makers.

• Essential legacy application for managing

maintenance of ships and aircraft.

• Migration from unstable and unsupported

technologies to modern languages/architectures.

• Demonstrate capability of using automation to

modernize PowerBuilder language DoD systems

Program Approach

• Automated modernization of highly complex

PowerBuilder system to Java, including Data Window

Migration.

• Utilized the OMG® GASTM and UML Standards.

• Transformed over 700,000 LOC of PowerBuilder,

including resolution to support 20 critical test cases

• Successfully transformed a highly complex US Navy

module to Java.

Key Accomplishments/Status

• Transformed using near 100% automation.

• Modular and open layered architecture for ease of

use/maintainability.

• Demonstrated the ability to use automation to move 4GL

language systems into modern multi-tier architectures

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

TSRI Automated Database Migration
DDL is transformed and migrated.

• There is the opportunity to look at modernizing

field types and filtering aged data.

• The model for the new database represents the

same older schema as it must be, to run the

legacy application logic.

• Dual DAO can support multiple Databases

ETL script for migrating the data itself.
− This is typically done with test data or scrubbed

data for the test and is required for ongoing

support for the project.

− The process is done multiple times and

characterized.

− Experience in leveraging 3rd party tools

including IBM utilities and Microsoft’s SISS.

Complete end to end database

validation
− Extraction from legacy database extraction

and modern database represented in common

file format where databases are compared.

− Independent validation of the entire process.

The process is automated and can be

repeated multiple times.

− Test cases exercising the application require

that the data schema and tables are correct

an additional separate validation of data set.

Experience in migrating the data,
− Synchronizing latest data changes and meet

GoLive time windows.

Original

Database

1. Derive Meta-Data and DB Schema

Native DDL

Extracted or
Exported

Transformed

DDL

Database

Access Object
(DAO)

Target

Database

2. Export Legacy Data and Import Into Modern DB

3. Round-Trip Data To Prove Equivalence

Original

Data

Data

Scrubbing

Data

Re-factoring

Target

Data

Original

Data

Round Trip

Data
Comparison

Target

Data

Legacy

Database

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

3 – Tier Legacy Data Base Architecture

Tier C
Business Logic Layer

Tier B
DAO Pattern

JDBC / ODBC

ADO.NET

ORM / Hibernate

Tier A
Modern RDBMS

DDL is transformed and migrated.
•There is the opportunity to look at modernizing field types and filtering
aged data.

•The model for the new database represents the same older schema as it
has to be, to run the legacy application logic.

•Dual DAO can support multiple Databases

ETL script for migrating the data itself.
This is typically done with test data or scrubbed data for the test and is
required for ongoing support for the project.

The process is done multiple times and characterized.

Experience in leveraging 3rd party tools including IBM utilities and
Microsoft’s SISS.

Complete end to end database validation
Extraction from legacy database extraction and modern database
represented in common file format where databases are compared.

Independent validation of the entire process. The process is automated
and can be repeated multiple times.

Test cases exercising the application require that the data schema and
tables are correct an additional separate validation of data set.

Experience in migrating the data,
Synchronizing latest data changes and meet Go-Live time windows.

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

TSRI Migration to the Cloud – 3-Step Approach

1. Migrate Monolithic Applications to Service-Oriented Applications

2. Service-Oriented to Native-Cloud Services

3. Native-Cloud, Docker, Kubernetes & Containers, Lambda/API Gateway- Server-less
Framework

• Future State Cloud Target Support

– True source to target replication of framework, business logic and UI.

– Library approach for legacy framework, control and batch

– Refactoring/Mapping to move all JCL, external type functionalities to Cloud library

• Automatic Transformation Ensures no Loss in Functionality

– True source to target replication of framework, business logic and UI.

– Library approach for legacy framework, control and batch

– Refactoring/Mapping to move all JCL, external type functionalities to Cloud library

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

TSRI Modernization to the Cloud Overview
TSRI has already completed modernizing mainframe, mid-range and thick-client
legacy applications to AWS, Azure, Oracle, Google Cloud & OpenShift.

These already created transformation and refactoring rules can immediately
applied to the current modernization strategy or at later stage as well.

With minimal adaption, TSRI can move the currently modernized applications to
the cloud using cloud-specific refactorings – targeting services, micro-services,
containerization, etc...

Cloud-specific refactorings will be reused on all follow-on applications

(one-time Engineering Effort for significant reuse)

TSRI can also adapt its process to other cloud architectures as well.

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Amazon Web Services & Microsoft Azure Cloud

Amazon Web Services

− TSRI has been a long-standing Amazon Web Services partner

− DocsRev, Documentation-as-a-Service, is an AWS Cloud Service

− TSRI has moved multiple COBOL, JCL systems to the AWS Cloud

Microsoft Azure

− TSRI modernized multiple critical systems to Azure (TJX, eBoks, Boeing)

− Languages such as COBOL, JCL, VB6, VB .NET were modernized to C#

− TSRI is a Microsoft Partner Network partner

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

TSRI Cloud Migration Highlights
TSRI has supported migration to Multiservice Architectures, Deployed in Multiple Cloud Environments

− Multiple DAO data layer injection allowing for interface to legacy and modernized data servers

− Encapsulation in containers with Rest service enter to Business Layer, transformed programs

− Rest API for common externals, bridges and legacy interfaces.

− Modernized GUI, supportable and extendable browser presentation layer.

Batch Programs

− Unique REST API (Batch) Endpoints, Batch programs now get exposed through REST endpoints to a python client

− Quintessential in getting batch programs to be executed on containers, separate from their corresponding python clients.

− Introducing filters and routing middleware to ensure certain containers exposed only certain batch programs.

− A status monitor allow for monitoring status of long running jobs that were invoked asynchronously. Easily integrated with

Business Apps or 3rd party schedules and under management.

Online Programs

− Generated API interfaces for business logic program and exposed them through adapter classes to be called by the web

service

• Business logic programs decoupled from the web controllers for the program to be injected through service providers.

• Allows for introducing custom pre- and post-execution codes for each transformed program, no altering the business

logic.

Externals & Framework

− TSRI has over 150 libraries for target language, handling difficult, unique and varied data types issues.

− TSRI has library of externals and interfaces to support common externals API including DB Message Bridge

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Migrate Monolithic Applications to Service-Oriented Applications
• Assessment, Analysis, Target Architecture and External Dependency Resolutions

• Transformation Sprints, Spirals of Increasing Size and Complexity, Deployment, Integration Testing

• Comparative Testing, Regression Testing, Refactoring for Performance and Code Quality

• CI/CD Multi-environment Deployment for QA, Scalability/Performance, Pilot and Production

• Deploy Docker, Kubernetes, Containers, AWS Services, API Gateway

Automatic Transformation Maintains Business Logic, Ensures

No Loss in Functionality - with Code Warranty
• 1:1, Like-for-Like, Source-to-Target Replication of Business Logic, Workflow and UI

• Library Approach for Legacy: Framework, Externals, Custom Implementations, Utility Functions to Cloud

• Automated Refactoring Applies Rules to Improve Codebase Without Changing Business Logic

• Allows for Changes to the Legacy Source Code at Any Point in the Project Without Business Stoppage

Cloud Migration

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

From Monolithic, Layered, SOA to Cloud Architectures

EXTERNAL INTERFACES

DATA TIER

COMMON DATA CAPABILITIES

INFRASTRUCTURE CAPABILITIES

LAYERED

ARCHITECTURES

CLOUD

ARCHITECTURES

SERVICE-ORIENTED

ARCHITECTURES

LEGACY DATABASE INTERFACES

PRESENTATION TIER

BUSINESS LOGIC TIER

COMMON DOMAIN CAPABILITIES

MONOLITHIC

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Java Technology Stack

UI

Service

Angular,
React,

Boostrap,
HTML5, CSS,

jQuery,
AJAX, JSON

Application
Service

Java

Spring Boot

Spring Boot
embedded

Tomcat

Batch
Client

Python

Batch
Service

Java

SpringBoot

or

SpringBatch

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

C# .NET Core Cloud Technology Stack

UI Service

Angular,
React, HTML5,
CSS, jQuery,
AJAX, JSON

.NET Core
MVC

.NET Core
Hosting
Service

Application
Service

.NET Core
Web API

.NET Core
Hosting
Service

Batch
Client

Python

Batch
Service

.NET Core
Web API

.NET Core
Hosting
Service

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

TSRI
Client Framework

Library

 SQL Queries

and Results

Angular/React
SPA

Application Services
Container Instances

Virtual Private Cloud (VPC)

AWS Cloud

Amazon
Cognito,

Identity and
Access,

Management

(IAM)

Application Load Balancer

Redis

AWS Directory
Service,

Security User Pools
Network Access

Control List

AWS Fargate Cluster

Amazon Elastic Container Service (ECS)

Task

ECS Tasks Definitions

Task

 Elastic Load Balancing

EC2 Container Registry

Application Services Docker Image
End Users

Deployment

AWS
CloudWatch

AWS API
Gateway

TSRI AWS Online Reference Architecture

Alternative

DB Instances

AWS Storage
Gateway

AWS

DataSync

Task

JSON

representation of
online data

AWS S3 Hosted
Website

AWS CloudFront

TSRI

Data Access Objects

CICS Framework Lib

External Lib

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Application Services Container Instances

Virtual Private Cloud (VPC)

AWS Cloud

Amazon RDS

 Aurora

AWS Fargate Cluster

Amazon Elastic Container Service (ECS)

Task

ECS Tasks

Definitions

Task

EC2 Container Registry

Deployment

Batch Services Docker Image

Batch Rest ServicesBatch Job Python Script

(https): REST call Batch JSON Job Return & Abort Code

 SQL Queries
and Results

AWS Simple Queue

Service (SQS)

AWS Elastic File System (EFS)

AWS API

Gateway

AWS Batch

Scheduler

TSRI Job
Status Manager

Async-Mode

Sync-Mode

(https): REST call JSON [pgmName,jcl_parm, xml_dir]

(https): REST call JSON [Job Id]

(https): REST call JSON [pgmName,jcl_parm,Xml_dir]

TSRI DAO

Batch Externals
Library

TSRI Java
Framework

Library

Alternative

DB Instances

AWS Storage

Gateway

AWS

DataSync

Update Job Status

Batch

Externals
Service

TSRI AWS Batch Reference Architecture

AWS CloudWatch

AWS MQ

TSRI DAO

Batch Externals
Library

TSRI Java
Framework

Library
TSRI Job DB

Query (Job_Id)

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Azure Container Instances

Azure Container Instances

Microsoft Azure Online Cloud Architecture Diagram

Azure Application
Gateway

TSRI + Azure
API Gateway

SQL Database

Serverless

Azure Kubernetes Service (AKS)

Presentation Layer Services Docker Image

Application Layer Services Docker Image

Azure Monitor

REST Call: POST

Screen Data

REST Call: REDIS PUT/GET Request

CICS Data Object Serialized / User Session Data

SQL Managed
Instance

Tasks

Virtual Network (VNet)

Azure

REDIS Cache

Azure Container Instances Task Definitions

Tasks

Azure Load Balancer

TSRI

Client Framework Library

ETL TSRI Database
Services

Tasks

Presentation Services Container Instances

TSRI

Data Access Objects

CICS Framework Library

Externals Framework Library

Deployment

Alternative Database Instances

PostgreSQL mySQL

MariaDBAzure SQL

Database

Migration

Managed

Database

Database SQL

Queries & Results

Application Services Container Instances

Azure

Active Directory

Domain Services

Azure

Active Directory

End Users

Record (serializer)

Screen
Data

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Microsoft Azure Cloud Batch Architecture Diagram

Batch Job Python Script Batch REST Services

Application Services Container Instances

Sync-Mode

Azure Application
Gateway

TSRI + Azure
API Gateway

Azure Storage
Queue

SQL Database

Serverless

Azure Kubernetes Service (AKS)

Batch Services Docker Image

Async-Mode

Update Job Status

REST Call (https): JSON [pgmName.jcl_parm.Xml_dir]

(https): JSON [Job Id]

REST Call (https): JSON [pgmName.jcl_parm.Xml_dir]

(https): JSON Batch Job Return & Abort Code

TSRI

Job Status
Manager

SQL Managed
Instance

Tasks

Virtual Network (VNet)

TSRI

Data Access Objects

Batch External Library

Framework Library

Azure Logic Apps

Azure Container Instances Task Definitions

Tasks

Batch

External

Services

ETL TSRI Database
Services

Tasks

Query (Job_Id) TSRI Job DB

TSRI

Data Access Objects

Batch External Library

Framework Library

Azure Container Instances

Azure Container Instances

Deployment

E-Mail FTP sFTP Azure Files

Azure Service
Bus Queue

Alternative Database Instances

PostgreSQL mySQL

MariaDBAzure SQL

Database

Migration

Managed

Database Database SQL

Queries & Results

Azure MonitorAzure Load Balancer

Batch
Programs

Batch
Programs

Batch
Jobs

Batch
Jobs

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

DevOps automation supports multiple development teams and continuous release cycles

DevSecOps Pipeline on Azure Cloud

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Integration on Microsoft Azure Cloud

Stack Cloud

OS Windows
VM

HW Virtual
Machine

series

Web
Server

.NET Core
Framework

App service

DB Azure SQL

DNS DNS

Code C#

Python

GUI Admin GUI

HTML5

CSS3

Bootstrap

SaaS Services

Availability
Zone 1

External
Systems

Micro-
services

Azure
Load

Balancer

Azure
Load

Balancer

Data Access
Tier Subnet

Business Logic
Tier Subnet

Web Tier
Subnet

NSG

Application
Gateway Subnet

Microsoft Azure
Architecture

WAF
Firewall

Azure
Load

Balancer

Application
Gateway

Security
Center

Virtual Network

Monitor
Azure Kubernetes

Service

Azure DevOps
Automation

DocsRev®
Service

Azure
Data Lake
Analytics

Azure SQL
Database

Deploy/Manage
Containers

Azure
Storage

Azure
Backup

Cloud
System Ops

Web
Services

API

DevOps

Web User

ARC Users
DNS

Azure
Active

Directory

VPN
Gateway

COBOL to C#
Batch Containers

JCL to Python
Container

DAO to SQL
or

DAO to DB2
or

DAO to Oracle

REST
Message

Bridge

Legacy
Services

VM

REDIS
Distributed

Cache/REST

VM

Status MGR
Batch

Containers

VM

Azure
Logic Apps

Mobile User

Oracle
Database

VM
Containers

VM
Containers

VM
Containers

VM
Containers

VM
Containers

VM
Containers

VM
Containers

VM
Containers

VM
Containers

DB2

A modern software stack in the scalable and flexible Azure environment

TSRI Framework
External Lib

NSG NSG NSG

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

COBOL to C# .NET Core on Microsoft Azure Cloud Case-Study
Multi-Phased Modernization

• 1st Phase to Service-Oriented App 2019

• 2nd Phase Refactoring to Cloud-Services in 2019
 Program Description

• TJX, a Fortune 100 worldwide retailer with $39 billion revenue, 4.300 stores and 270.000
employees

• System for executing unique buying process resulting in industry-leading inventory turnover

• Buying process viewed as the catalyst for years of unprecedented growth and profitability

• 20-year-old system written in legacy COBOL & JCL on languages and operating on expensive

hardware

• Support and maintenance were not aligned with Company best practices

Program Approach

• COBOL & JCL transformed to C# & Python with near
100% automation (99.9x%)

• End-to-end traceability of fully automated conversion

process to ensure complete preservation of business
logic

• Architecture refactoring to target Azure services
enabling DevOps aligned with SAFe Agile sprints

Key Accomplishments/Status

• Modernized code delivered directly to Azure CI/CD pipeline

• Batch program architecture with single container image to

simplify deployment and administration

• REDIS Cache isolation to provide CICS session state to all
containers

• Efficient HTML rendering enabling Angular front-end

development

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

COBOL to Java on Amazon AWS Cloud Case-Study
COBOL to Java on AWS Cloud Case-Study Live Demo on AWS EC2 & ElasticBeanstalk (Serverless)

Detailed Case-Study on AWS AWS on EC2 AWS on ElasticBeanstalk

Multi-Phased Modernization (1st Phase to Service-Oriented App 2018, 2nd Phase Refactoring to Cloud-Services in
2018)

Program Description

• Utilized by the United States Air Force, Air Force reserve, and Air National Guard.

• Mission critical system used by 18,000 users.

• Used at 260 locations all over the world.

• 54-year-old system written in legacy COBOL & C languages & on decaying
technology.

• $30B of USAF inventory tracked through SBSS system.

• Operating expenses of $16.500.000+
Program Approach

• Approximately 1,300,000 LOC COBOL & C
Transformed to Java using near 100% automation.

• Completed ahead of schedule, under budget.

• Included move to cloud, big data, mobile release.

• Modern Web application, reduced O&M cost,

increased availability/faster time to market.

Key Accomplishments/Status

• Transformed using near 100% automation.

• 1 defect per 21,000 lines of transformed code.

• Identical record and DAO method consolidation.

• Rearchitected to AWS cloud allowing for disaster recovery
and AWS services.

https://aws.amazon.com/blogs/apn/automated-refactoring-of-a-u-s-department-of-defense-mainframe-to-aws/
http://ec2-18-220-141-101.us-east-2.compute.amazonaws.com:8080/aflcm-demo/jsp/newlogin.jsp
http://peat-dev.us-east-2.elasticbeanstalk.com/

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Deployment

Google Cloud - Online Reference Architecture Diagram

SQL Database

Google Kubernetes Engine (GKE)

Presentation Layer Services Docker Image

Application Layer Services Docker Image

Operations Suite

JSON
representation of

CICS Data

 Google Virtual Private Cloud (VPC)

Google
MemoryStore
Session cache

Cloud Load Balancing

TSRI

Client Framework
Library

ETL TSRI Database
Services

TSRI
Data Access Objects

CICS Framework Library
Externals Framework Library

 Google Cloud Run/Google Kubernetes Engine(GKE)

Database

Migration

Database SQL

Queries & Results

Application Services
Container Instances

Identity Platform

Cloud Identity

User
Session

Users

Google Cloud

Cloud SQL
Managed Instance

Alternative Database Instances

Cloud
SQL PostgreSQL

Cloud
SQL MySQL

MariaDBCloud SQL

Managed

Database

TSRI + Google
API Gateway

Google Cloud Deployment Manger

Angular/React
SPA

Google Firebase

Transformed CICS
COBOL Programs

Java

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

Google Cloud - Batch Reference Architecture Diagram

Batch Job Python Script
Batch REST Services

Application Services Container Instances

Sync-ModeGoogle
API

Gateway

Google Kubernetes Engine (GKE)

Batch Services Docker Image

Async-Mode

Update Job Status

REST Call (https): JSON [pgmName.jcl_parm.Xml_dir]

(https): JSON [Job Id]

REST Call (https): JSON [pgmName.jcl_parm.Xml_dir]

(https): JSON Batch Job Return &Abort Code

TSRI

Job Status
Manager

TSRI

Data Access Objects

Batch External Library

Framework Library

3rd-Party Scheduler
or

Google Cloud
Tasks

Batch

External

Services

Query (Job_Id) TSRI Job DB

TSRI

Data Access Objects

Batch External Library

Framework Library

 Google Cloud Run/Google Kubernetes Engine (GKE)

E-Mail FTP sFTP Cloud Filestore

Google
Pub/Sub

Database
SQL

Queries &
Results

Operations SuiteCloud Load Balancing

Batch
Programs

Batch
Programs

Batch
Jobs

Batch
Jobs

Google Cloud

RabbitMQ

Google Virtual Private Cloud

ETL TSRI Database
Services

Database

Migration

Cloud SQL
Managed Instance

Alternative Database Instances

Cloud
SQL PostgreSQL

Cloud
SQL mySQL

MariaDBCloud SQL

Managed

Database

Google Cloud Deployment Manger

SOFTWARE MODERNIZATION ASSURED
© TSRI. All rights reserved.

TSRI Container Support

− REST API supports Containerized deployments where only communication is through network calls

• TSRI has been migrated over time from the .traditional WCF (Windows Communication Foundation)
framework .to the modern .NET Core WEB API The .NET Core API allows for deployment on both windows

and Unix containers

• TSRI has also migrated to a multi tier approach that support presentation service separation from business
logic, offering migrated programs with modern interfaces and maintainable

• Online module for the transformed applications rely on user session data, there was a need to ensure that this
session is consistent across all replicas.

• The Redis distributed cache was introduced as an external component to maintain user sessions. We also took
advantage of the cache to store user specific CICS data thereby eliminating the need for the presentation layer to

send the entire CICS data across the http rest calls it makes to the business logic REST API

− TSRI supports Docker containerization process, docker file template for .NET Linux/Windows, build and
execution commands for the service intended to be deployed.

− Kubernetes provides orchestration and management of container deployment

• The resulting docker image can be pushed to Azure Container Registry and executed directly or via the
Azure Kubernetes Service.

• Kubernetes also allows for deployment specific configuration values to be specified in the .yaml file which

can be read as environment variables by the programs at runtime.

• Kubernetes allows for replication of containers. load balancing across these replicas.

© TSRI. All Rights Reserved.

Reservations Application Online/Batch DEMO Overview
• IBM Mainframe Application for making class reservations and accepting payments

written in COBOL and JCL.
• UI allows for entering and updating students/customers, making payments and seeing class availably

• Batch jobs build current monthly calendar for center, extracts and categorizes data, maps classes and rooms
between active and inactive centers, validates students/customer and employee and updates files

• TSRI targets Java for Backend and Angular/Typescript for Front End, jobs were transformed to Python

• TSRI Sort leveraged as external replacement

• TSRI targets triple A Sonar scores for Bugs, Vulnerabilities and Hotspots

 Automation Rates

COBOL to Java
• 10,970 COBOL LOC
• 100.00% Automation
• 0 manually patches

JCL to Python
• 2,040 JCL LOC
• 99.71% Automation
• 12 manual patches

© TSRI. All Rights Reserved.

Demo Architecture Reservations Application Online and Batch

• COBOL to Java, JCL to Python, on OCI

• Deployed Angular Front-end
framework with TSRI framework

• WebApi Containerized Backend

• Support session caching with Redis

• Python Batch Job deployed in VM

• Batch Containerized Backend

• Batch Network Files Share

Bradley Charleson

Principal Account Executive
bcharleson@tsri.com

Joseph Prikhodko
Business Development

Manager
jprikhodko@tsri.com

Scott K Pickett

Vice President, Product &
Service Delivery

skpickett@tsri.com

Thank you for your time!

The Software Revolution, Inc. (TSRI)

11332 NE 122nd Way, Suite 300

Kirkland, WA 98034-6949

USA

Info@tsri.com

+1 (425) 284-2770

mailto:bcharleson@tsri.com
mailto:prikhodko@tsri.com
mailto:skpickett@tsri.com
mailto:Info@tsri.com

	Slide 1: Architecture-Driven Software Modernization
	Slide 2
	Slide 3: About TSRI
	Slide 4: Customers
	Slide 5: Featured Projects
	Slide 7: Modernization Method – Formal Methods AI
	Slide 8: Modernization Phases
	Slide 9: TSRI Technology and Process
	Slide 10
	Slide 11: TSRI Automated Code Level Documentation
	Slide 12: Air Force Lifecycle Management Center Legacy Screens
	Slide 13: Mainframe to Cloud Demonstration
	Slide 14: Example UI Modernization
	Slide 17: TSRI Automated Refactoring
	Slide 18: Semi-Automated & Custom Refactoring Examples
	Slide 19: Redesigning & Reengineering IT Architectures
	Slide 20: TSRI Continuous Improvements
	Slide 21: Test Process:
	Slide 24: Testing Considerations with Automated Modernization
	Slide 25: Testing: Plan, Execute, Report
	Slide 26: Testing: Automation
	Slide 27: Business Case - Actual Customer Example
	Slide 28: TSRI Capabilities
	Slide 30: List of Source & Target Technologies for Automated Conversion
	Slide 31: Automation Levels Across Languages
	Slide 32: Quality Refactoring: COBOL to Java
	Slide 33: Python – Emissions Quality and Progress
	Slide 35: USAF Standard Base Supply System (SBSS) ILS-S
	Slide 36: HUD Unisys COBOL to Java Modernization Factory
	Slide 37: USAF Reliability & Maintainability Information System (REMIS)
	Slide 38: US Navy PMW150 – (NTCSS System): PowerBuilder to Java
	Slide 39: TSRI Automated Database Migration
	Slide 40: 3 – Tier Legacy Data Base Architecture
	Slide 41: TSRI Migration to the Cloud – 3-Step Approach
	Slide 42: TSRI Modernization to the Cloud Overview
	Slide 43: Amazon Web Services & Microsoft Azure Cloud
	Slide 44: TSRI Cloud Migration Highlights
	Slide 45
	Slide 46: From Monolithic, Layered, SOA to Cloud Architectures
	Slide 47
	Slide 48: C# .NET Core Cloud Technology Stack
	Slide 49
	Slide 50
	Slide 51: Microsoft Azure Online Cloud Architecture Diagram
	Slide 52: Microsoft Azure Cloud Batch Architecture Diagram
	Slide 53: DevSecOps Pipeline on Azure Cloud
	Slide 54: Integration on Microsoft Azure Cloud
	Slide 55: COBOL to C# .NET Core on Microsoft Azure Cloud Case-Study
	Slide 56: COBOL to Java on Amazon AWS Cloud Case-Study
	Slide 57: Google Cloud - Online Reference Architecture Diagram
	Slide 58: Google Cloud - Batch Reference Architecture Diagram
	Slide 63: TSRI Container Support
	Slide 64: Reservations Application Online/Batch DEMO Overview
	Slide 65: Demo Architecture Reservations Application Online and Batch
	Slide 66

