
1 © 2024 GrammaTech, Inc.

Migration to Memory
Safe Language:

At Speed, At Scale
DISA Technical Exchange Meeting

July 25, 2024

A leading developer of software-assurance
and advanced cyber-security solutions for

US Government

• Ray DeMeo, Chief Growth Officer
• Thomas Wahl, PhD., Principal Researcher
• Jason Rowley, Growth Team

Securing The Software That
Secures The World

2 © 2024 GrammaTech, Inc.

Agenda

1. The Problem
2. US Government Call to Action
3. Memory Safe in support of DISA Next Strategy
4. Demonstration
5. Q&A

3 © 2024 GrammaTech, Inc.

GrammaTech Overview

 US Based, centered across Central MD, Ithaca NY & FL Space Coast
 Highly technical small business in support of DoD & IC
 World-class solution and research expertise (>50% PhDs)

 Providing
 Advanced Cyber Services, Products, Research, Intelligence,

and Mission Support
 35 years experience tackling the hardest cybersecurity

problems, 151 SBIR/STTRs

 Value
 Software security, resilience, sustainment, automation, and

developer productivity

Past Performance

4 © 2024 GrammaTech, Inc.

Federal Call to Action

June 2023 – DHS CISA Joint Guide for S/W Mfgrs.
 Highlights memory safety vulnerabilities as a major

security concern and encourages adoption of memory
safe languages

December 2023 – The Case for Memory Safe Roadmaps
 Joint statement: CISA, NSA, FBI, Allied Nations
 Call to implement roadmaps for migration of critical s/w

to memory-safe languages
 Recommends migration to: C#, Go, Java, Python, Rust

& Swift
February 2024 – White House Press Release
 Office of the National Cyber Director report

C++ is principally unsafe

5 © 2024 GrammaTech, Inc.

Some of the most infamous
cyber events in history caused
real-world damage
• 2003 Slammer worm
• 2014 Heartbleed vulnerability
• 2016 Trident exploit
• 2023 Blastpass exploit

The common root cause:
 Memory safety vulnerabilities

The Problem
DoD is forced to shield networks made of
vulnerable components built with C++ code

Yet - 70% of critical vulnerabilities - and their
associated costs - can be avoided simply by
moving to memory-safe language

DHS CISA

Google Chromium project

July 2024 global outages from
CrowdStrike update reported to
be a C++ error. Cost estimated to
be in excess of $24B

70% is an amazingly high number!

Microsoft’s Security Response Center (MSRC)

https://www.cisa.gov/case-memory-safe-roadmaps
https://www.chromium.org/Home/chromium-security/memory-safety/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/

6 © 2024 GrammaTech, Inc.

DISA Next Strategy FY 2025-2029

Operate and Secure DAO DISA

Support Strategic C3

Optimize the Network

Operationalize the Data

Fight and win

Respond well in crisis

Gain and maintain relative
advantage in cyber space

Make the DoD better

• Defense Information System Network
• Hybrid Cloud Environment
• National Leadership Command Capability
• Joint /Coalition Warfighting Tools
• Consolidated Network
• Zero Trust Tools
• Data Management
• Workforce

All depend upon Memory Safe Architecture

7 © 2024 GrammaTech, Inc.

C++ is the Achilles Heel to DODIN

• Cisco Catalyst Series Switches
• Cisco ISR (Integrated Services

Routers)
• Juniper EX Series Switches
• Juniper SRX Series Services

Gateways
• HPE Aruba Switches
• HPE FlexNetwork Routers
• Palo Alto Next-Generation

Firewalls
• Fortinet FortiGate Firewalls

• Cisco Aironet Series Access Points
• Cisco Meraki Wireless Access

Points
• HPE Aruba Wireless Access Points
• HPE Aruba Mobility Controllers
• Juniper Mist Wireless Access

Points
• Brocade Ruckus Wireless Access

Points

• Harris Falcon III AN/PRC-
152A Wideband
Networking Handheld
Radio

• Harris Falcon III AN/PRC-
117G Multiband Manpack
Radio

• Thales AN/PRC-148 JEM
(JTRS Enhanced MBITR)
Radio

• Thales AN/PRC-154
Rifleman Radio

• Motorola APX Series P25
Two-Way Radios

• Motorola XTS Series
Digital Portable Radios

Some notable products on the DoDIN
APL include:

• Hughes HX System
• Hughes JUPITER System
• Inmarsat Global Xpress
• Inmarsat L-band

services
• Intelsat EpicNG
• IntelsatOne Flex
• SpaceX Starlink
• OneWeb LEO Satellite

Services

Network

Radio

Wireless

Satellite

8 © 2024 GrammaTech, Inc.

The Cost
Think of designing or deploying anything of consequence…

…knowing that the most substantial failure mechanism is already included
in your design when safer alternatives exist

Not a so-called corner-case:

It’s the largest, most obvious
point of failure – likely the
greatest cost to cyber-protect
and maintain that system
over its lifetime

9 © 2024 GrammaTech, Inc.

Automation, Speed, Scale

C++ to Rust Assisted Migration (CRAM)

This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract
No. HR001123C0079. The views, opinions, and/or findings expressed in this document are those of the author and should
not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

10 © 2024 GrammaTech, Inc.

Modern, Safe(r) Languages

“Safe language:” memory access via an interface that provably rules
out certain errors (use after free, uninitialized read).

Rust:
 Safe: enforced via concept of ownership
 Efficient: no need for garbage collection

(unlike C#, Go, Java)
 Modern: supportive build system,

active community

But what do we do about C++ legacy code?

11 © 2024 GrammaTech, Inc.

DARPA: Lifting Legacy Code to Safer Languages

Goal: semi-automatic migration of legacy C/C++ code
Target: (your favorite) safe programming language

May: assume well-designed C/C++ code

Must: take advantage of target’s idiomatic features

12 © 2024 GrammaTech, Inc.

Vision: From C++ to Rust

C++ is principally unsafe, yet it does not force you to
program in a hazardous way.

Put another way:

“Rust is like C++, except the [language semantics] forces
programmers to do what they should be doing anyway.”

13 © 2024 GrammaTech, Inc.

Migration To Memory Safe Languages

Generated Rust

potentially unsafe
(crashes, exploits)

efficient
safer, hardened
still unsafe for future
development

efficient
provably safe
idiomatic, human-
maintainable
modern

Language Migration

Refactored C++

Legacy C++

Migrating C++ to Rust
from the inside out:

Refactoring

14 © 2024 GrammaTech, Inc.

Stages: Refactoring and Migration

15 © 2024 GrammaTech, Inc.

Stage-1 Example: Const Hardening

C++: variables are (unlike Rust variables) by default mutable.
We change them to const whenever possible.

 prevents some semantic programming errors

 facilitates analysis
refactoring

const double segdist = p1->Distance(*p2);

double segdist = p1->Distance(*p2);

↓

16 © 2024 GrammaTech, Inc.

Stage-1 Example: Breaking Up Alias Nests

Refactoring multiple non-const references to same memory cell:

General principle: “Required in Rust, safer in C++.”

17 © 2024 GrammaTech, Inc.

Stage-2 Example: Container Traversal

for (std::vector<Point>::iterator
 p1 = pts.begin(), p2 = std::next(pts.begin());

 p2 != pts.end(); ++p1, ++p2) { ... }

What defines a container traversal idiom?

1. Direction: left-to-right vs. right-to-left traversal?

2. Mutation: is the container content modified?

3. Indexing: 1, 2, 3 iterator variables?

CRAM: 1. abstracts traversal code to idiom level (using static analysis)

2. retargets idiom to Rust (using migration library)

18 © 2024 GrammaTech, Inc.

Sample Results

19 © 2024 GrammaTech, Inc.

Code Readability

C++

Rust

20 © 2024 GrammaTech, Inc.

User Interface

21 © 2024 GrammaTech, Inc.

Performance

(ms)

C++

Rust

Example: runtime comparisons for a
traversal of a (large) list<Point>:

• original

• after hardening refactorings

• after translation to Rust by an expert

• after translation to Rust using CRAM

Potential for faster performance
Equivalent to expert manual migration

22 © 2024 GrammaTech, Inc.

Demonstration

23 © 2024 GrammaTech, Inc.

Discussion

24 © 2024 GrammaTech, Inc.

Availability

 GrammaTech Services Offerings to migrate to Memory Safe
 Talk with us!

 More detailed capability discussion
 Solution Brief: grammatech.com/cyber-security-
solutions/migration-to-memory-safe-code/

 Email: cram@grammatech.com

25 © 2024 GrammaTech, Inc.

Thank You!

Ray DeMeo
rdemeo@grammatech.com
m.978-549-1122

www.grammatech.com

Jason Rowley
jrowley@grammatech.com
m.704-941-5356

	Slide Number 1
	Agenda
	GrammaTech Overview
	Federal Call to Action
	The Problem
	DISA Next Strategy FY 2025-2029
	C++ is the Achilles Heel to DODIN
	The Cost
	Automation, Speed, Scale
	Modern, Safe(r) Languages
	DARPA: Lifting Legacy Code to Safer Languages
	Vision: From C++ to Rust
	Migration To Memory Safe Languages
	Slide Number 14
	Stage-1 Example: Const Hardening
	Stage-1 Example: Breaking Up Alias Nests
	Stage-2 Example: Container Traversal
	Slide Number 18
	Code Readability
	User Interface
	Performance
	Slide Number 22
	Slide Number 23
	Availability
	Slide Number 25

