« Ray DeMeo, Chief Growth Officer
 Thomas Wahl, PhD., Principal Researcher
« Jason Rowley, Growth Team

DISA GRAMMATECH

Migration to Memory Securing The Software That
Safe Language: Secures The World
At Speed, At Scale

DISA Technical Exchange Meeting
July 25, 2024

1. The Problem

2. US Government Call to Action

3. Memory Safe in support of DISA Next Strategy
4. Demonstration

5. Q&A

@ GRAMMATECH 2

GrammaTech Overview

= US Based, centered across Central MD, Ithaca NY & FL Space Coast

= Highly technical small business in support of DoD & IC
= World-class solution and research expertise (>50% PhDs)

Past Performance

= Providing
» Advanced Cyber Services, Products, Research, Intelligence,
and Mission Support

» 35 years experience tackling the hardest cybersecurity
problems, 151 SBIR/STTRs

= Value

» Software security, resilience, sustainment, automation, and
developer productivity

@ GRAMMATECH 3 ©2024 Gramma Tech, Inc.

Federal Call to Action

C ++ | S p rl NC | p d | |y uns afe @&E“&'Séﬁf’@ [s certnz

g E}"&;.?&'E?w e e
June 2023 — DHS CISA Joint Guide for S/W Mfgrs. ot \

)

)
= Highlights memory safety vulnerabilities as a major P“
(X) d
Q ©O)__

security concern and encourages adoption of memory
safe languages

December 2023 — The Case for Memory Safe Roadmaps

= Joint statement: CISA, NSA, FBI, Allied Nations The Case for Memory Safe
= Call to implement roadmaps for migration of critical s/w Roadmaps

to memory-safe languages N e omery el Sotog Smpoay "
= Recommends migration to: C#, Go, Java, Python, Rust

& Swift

February 2024 — White House Press Release
= Office of the National Cyber Director report

@ GRAMMATECH 4

The Problem

DoD is forced to shield networks made of
vulnerable components built with C++ code

Yet - 70% of critical vulnerabilities - and their
associated costs - can be avoided simply by
moving to memory-safe language

Microsoft's Security Response Center (MSRC)

70% is an amazingly high number!

2006 2007 2008 2009 200 201 2z 203 2014 205 206 2007 208

Google Chromium project

y safety ot memaorny safety
GRAMMATECH 5

Some of the most infamous
cyber events in history caused
real-world damage

* 2003 Slammer worm

* 2014 Heartbleed vulnerability
e 2016 Trident exploit

e 2023 Blastpass exploit

The common root cause:
Memory safety vulnerabilities

DHS CISA

July 2024 global outages from
CrowdStrike update reported to
be a C++ error. Cost estimated to
be in excess of $24B

https://www.cisa.gov/case-memory-safe-roadmaps
https://www.chromium.org/Home/chromium-security/memory-safety/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/

DISA Next Strategy FY 2025-2029

Defense Information System Network
Hybrid Cloud Environment

National Leadership Command Capability
Joint /Coalition Warfighting Tools
Consolidated Network

Zero Trust Tools

Data Management

Workforce

Respond well in crisis Operate and Secure DAO DISA

Fight and win Support Strategic C3

Gain and maintain relative
advantage in cyber space

Optimize the Network

Make the DoD better Operationalize the Data

All depend upon Memory Safe Architecture

@ GRAMMATECH 6 © 2024 Gramma Tech, Inc.

APL include:

kS

Network

Cisco Catalyst Series Switches
Cisco ISR (Integrated Services

Routers)

Juniper EX Series Switches
Juniper SRX Series Services
Gateways

HPE Aruba Switches

HPE FlexNetwork Routers
Palo Alto Next-Generation
Firewalls

Fortinet FortiGate Firewalls

@ GRAMMATECH

Some notable products on the DoDIN

>

Wireless

Cisco Aironet Series Access Points
Cisco Meraki Wireless Access
Points

HPE Aruba Wireless Access Points
HPE Aruba Mobility Controllers
Juniper Mist Wireless Access
Points

Brocade Ruckus Wireless Access
Points

C++ is the Achilles Heel to DODIN

@)

Radio

Harris Falcon 11l AN/PRC-
152A Wideband
Networking Handheld
Radio

Harris Falcon 11l AN/PRC-
117G Multiband Manpack
Radio

Thales AN/PRC-148 JEM
(JTRS Enhanced MBITR)
Radio

Thales AN/PRC-154
Rifleman Radio
Motorola APX Series P25
Two-Way Radios
Motorola XTS Series
Digital Portable Radios

Satellite

Hughes HX System
Hughes JUPITER System
Inmarsat Global Xpress
Inmarsat L-band
services

Intelsat EpicNG
IntelsatOne Flex
SpaceX Starlink
OneWeb LEO Satellite
Services

2)

© 2024 GrammaTech, Inc.

The Cost

Think of designing or deploying anything of consequence...

...knowing that the most substantial failure mechanism is already included
in your design when safer alternatives exist

Not a so-called corner-case:

Relative cost to fix bugs,
based on time of detection

It's the largest, most obvious
point of failure — likely the
greatest cost to cyber-protect
and maintain that system
over its lifetime

@ GRAMMATECH

Automation, Speed, Scale

C++ to Rust Assisted Migration (CRAM)

This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract
No. HR001123C0079. The views, opinions, and/or findings expressed in this document are those of the author and should
not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution Unlimited.

@ GRAMMATECH 9 © 2024 GrammaTech, Inc.

Modern, Safe(r) Languages

“Safe lanquage:” memory access via an interface that provably rules
out certain errors (use after free, uninitialized read).

Rust:
» Safe: enforced via concept of ownership

= Efficient: no need for garbage collection
(unlike C#, Go, Java)

= Modern: supportive build system,
active community

But what do we do about C++ legacy code?

@ GRAMMATECH 10

DARPA: Lifting Legacy Code to Safer Languages

@

»

Goal: semi-automatic migration of legacy C/C++ code
Target: (your favorite) safe programming language
May: assume well-designed C/C++ code

Must: take advantage of target’s idiomatic features

_/

@ GRAMMATECH

11

Vision: From C++ to Rust

C++ is principally unsafe, yet it does not force you to
program in a hazardous way.

Put another way:

‘Rust is like C++, except the [language semantics] forces
programmers to do what they should be adoing anyway.”

@ GRAMMATECH 12

Migration To Memory Safe Languages

Migrating C++ to Rust

rom the inside out:
f Language Migration Generated Rust
v efficient
Refactoring Refactored C++ Y provably safe
v idiomatic, human-

maintainable

efficient v modern

4

v safer, hardened

A still unsafe for future
development

Legacy C++

A potentially unsafe
(crashes, exploits)

@ GRAMMATECH 13 ©2024 Gramma Tech, Inc.

Stages: Refactoring and Migration

@ GRAMMATECH
14

Stage-1 Example: Const Hardening

C++: variables are (unlike Rust variables) by default mutable.
We change them to const whenever possible.

v’ prevents some semantic programming errors
v’ facilitates analysis

\

double segdist = pl->Distance (*p2); o
const double segdist = pl—>Distance(*p2);}_

@ GRAMMATECH 15

Stage-1 Example: Breaking Up Alias Nests

Refactoring multiple non-const references to same memory cell:

vold multiple borrows () { vold single borrow() {
Point p; Point p;

] * — . d * — .
ggigg& gg = igé; ﬁ S?lgginig pl&E’*pO;
f(pl); £ (*p0) ;

} g(p); } g (*p0) ;

General principle: “Required in Rust, safer in C++.”

@ GRAMMATECH 16 ©2024 Gramma Tech, Inc.

Stage-2 Example: Container Traversal

for (std::vector<Point>::iterator
pl = pts.begin(), p2 = std::next (pts.begin()):
p2 != pts.end(); ++pl, ++p2) { ... 1}

What defines a container traversal idiom?

1. Direction: left-to-right vs. right-to-left traversal?
2. Mutation: is the container content modified?

3. Indexing: 1, 2, 3 iterator variables?

CRAM: 1. abstracts traversal code to idiom level (using static analysis)
2. retargets idiom to Rust (using migration library)

@ GRAMMATECH 17 ©2024 Gramma Tech, Inc.

Sample Results

GRAMMATECH
8 "

Code Readability

std::list<Point> trim_front(std::1list<Point>& pts, float dist) {

if (pts.size() < 2)
return {};

std::list<Point> result;
result.push_back(pts.front());
double d = 8.6f;

for (auto pl = pts.begin(), p2 = std::next(pts.begin()); p2 != pts.end(); ++pl, ++p2) {

Point& next_point = *p2;

double segdist = pl-=Distance(next point);

if ((d + segdist) > dist) {
double frac = (dist - d) / segdist;
auto midpoint = p1->PointAlongSegment(next_point, frac);
result.push_back(midpoint);

pts.erase(pts.begin(), p1);
pts.front() = midpoint;
return result;

} else {
d += segdist;
result.push_back(*p2);

}

}

pts.clear();
return result;

}

Rust

C++

@ GRAMMATECH

fn trim_front(pts: &mut Vec<Point>, dist: f32) -> Vec<Point> {
if pts.len() < 2 {
return vec![];
1
let mut result: Vec<Point> = Vec::new();
result.push(pts[@].clone());
let mut d: fe4 = 0.0f32 as fo64;
for 1 in @..(pts.len() - 1) {
let next_point: &Point = &pts[i + 1];
let segdist: f64 = pts[i].distance(&next_point);
if (d + segdist) > (dist as fe4) {
let frac: f64 = ((dist as fe64) - d) / segdist;
let midpoint: Point = pts[i].point_along_segment(&next_point,
result.push(midpoint.clone());
pts.drain(e..i);
pts[@] = midpoint;
return result;
} else {
d += segdist;
result.push(pts[i + 1].clone());
I ¥

pts.clear();
result

frac);

User Interface

File | Edit Selection View Go Run Jerminal Help

® 0

=7

%7
.
O W o ~J O U & Wk e

=
LS

ol = e~ o
-~ h U & W

[
@ W o

RS
NN

2

]
£

25

G+ generics_and_mixed_traits.cc @ m .-

€+ generics_and_mixed_traits.cc

#define CRAM CLONE(x) x
#define _ CRAM_ MOVE(x) x
#define _ CRAM_ DEREF(x) x
#define _ CRAM_ CREF(x) x
// A type-parameterized struct "Pair’ that calls methods on instances of the type pz

#include <iostream>

template <typename T>
class Pair { // a "homogeneous" pair
private:
Ty
Tr;
public:
// construct a pair from 1, r =
Pair(const T& 1, const T& r) noexcept: 1(_ CRAM_DEREF(1)), r(__ CRAM_DEREF(r)) {}

// add 1, r to get a single T

T sum() const noexcept { return this->Ll.add(CRAM CREF(this->r)); }

// print a pair to stdout

template <typename TT> friend std::ostream& operator<<(std::ostream&, const Pair<l

h

template <typename T>
std::ostream& operator<<(std::ostream& os, const Pair<T>& p) {
CRAM_ DEREF(0s) << "Left: " << _ CRAM_CLONE(p.l) << std::endl;
CRAM_DEREF(o0s) << "Right: " << CRAM_CLONE(p.r);
return os;

}

® generics_and_mixed_traits.rs ®

rust > src > @ generics_and_mixed_traits.rs

OOV EWNE

use std::fmt;
pub trait AddTrait {
fn add(&self, _: &Self) -> Self;
}
#[derive(Clone)]
struct Pair<T> {
1T,
r: T,
}
impl<T: AddTrait> Pair<T> {
fn sum(&self) -> T {
self.l.add(&self.r)
}
}
impl<T: fmt::Display> fmt::Display for Pair<T> {
fn fmt(&self, os: &mut fmt::Formatter<' >) -> fmt::Result {
writeln!(os, "Left: {}", self.l).unwrap();
return write!(os, "Right: {}", self.r);
}
}
#[derive(PartialEq, Copy, Clone)]
enum Unit {
IN,
M,
}
#[derive(Clone)]
struct Distance {
pub x: f32,
pub unit: Unit,

@ GRAMMATECH 20

© 2024 GrammaTech, Inc.

Performance

Example: runtime comparisons for a
traversal of a (large) 1ist<Point>:

 original
 after hardening refactorings

 after translation to Rust by an expert

| 449

164

169

@nslation to Rust using CRAM

‘%

:|> C++
:|> Rust
800

0 ——200 400

Potential for faster performance
Equivalent to expert manual migration

@ GRAMMATECH

21

600

(ms)

Demonstration

@ GRAMMATECH
22

Discussion

@ GRAMMATECH
23

Availability

» GrammaTech Services Offerings to migrate to Memory Safe

= Talk with us!

= More detailed capability discussion

= Solution Brief: grammatech.com/cyber-security-
solutions/migration-to-memory-safe-code/

» Email: cram@grammatech.com

@ GRAMMATECH 24 ©2024 Gramma Tech, Inc.

@ GRAMMATECH

Thank You!

Jason Rowley
jrowley@grammatech.com
m.704-941-5356

25

Ray DeMeo
rdemeo@grammatech.com
m.978-549-1122

www.grammatech.com

© 2024 GrammaTech, Inc.

	Slide Number 1
	Agenda
	GrammaTech Overview
	Federal Call to Action
	The Problem
	DISA Next Strategy FY 2025-2029
	C++ is the Achilles Heel to DODIN
	The Cost
	Automation, Speed, Scale
	Modern, Safe(r) Languages
	DARPA: Lifting Legacy Code to Safer Languages
	Vision: From C++ to Rust
	Migration To Memory Safe Languages
	Slide Number 14
	Stage-1 Example: Const Hardening
	Stage-1 Example: Breaking Up Alias Nests
	Stage-2 Example: Container Traversal
	Slide Number 18
	Code Readability
	User Interface
	Performance
	Slide Number 22
	Slide Number 23
	Availability
	Slide Number 25

