PRESENTATION TO DISA TEM

(OCIENT)™

ABOUT OCIENT

UNIQUE DATA ANALYSIS CAPABILITIES

(OCIENT)[™]

OCIENT DELIVERS SOLUTIONS OPTIMIZED BY USE CASE

Telecommunications and Networks:

CDR Search & Analysis

Video On-Demand Optimization

ICR & IPDR Search & Analysis

Climate & Environmental Intelligence:

Weather, Climate and Environmental Analysis, Alerting, Modelling & Prediction

Resource and Supply Chain Planning

Insurance, Agricultural, Real Estate, Business and Financial Decision Making

Intelligence and Security:

Lawful Intercept

Threat Hunting with Investigative Analysis

Space & Satellites

Financial Security

AdTech:

Campaign Forecasting

Audience Analytics

Trade Area & Traffic Pattern Analysis

Data Fabrication:

Data Assimilation & Publishing

LLM Data Preparation and Enhancement

TECHNOLOGY OVERVIEW

COMPLETE SOLUTION STACK

(OCIENT)[™]

ROSA (REMOTE OBJECT) VS. CASA (STORAGE-ADJACENT) PERFORMANCE BENCHMARK ON 7 TRILLION NORMALIZED ROWS AT SAME COST

EXAMPLE SYSTEM NOTIONAL SYSTEM ARCHITECTURE

Queuing / Kafka			Receive, protect, queue			
Load and Transform			Accepting multiple, simultaneous streams of data; parse and transform from semi- structured to relational schema, protect, deduplicate and index - made available to query within seconds			
Foundation			Erasure storage protection and processing of data			
SQL			Provides query results to JDBC / ODBC connections as well as performs admin / metadata duties			
Node	CoresSQL	Me	mory	Storage	Qty	
Queuing	32	19	2GB	12 x 10TB HDD	2	
Loader	56	1	ТВ	8 x 2TB NVMe	2	
Foundation	56	1TB		12 x 15.3TB NVMe	12	
SQL	56	1TB		4 x 2TB NVMe	3	
Total Core Count				896		
Raw Disk Storage				2,200ТВ		
Protection			8 Data + 2 Parity + 2			

System design is dependent on complexity of transformation, sampling rate, scale, number of mixed workloads, concurrency etc. Workshops will be used to determine an appropriate BOM and build the financial and technical business case based on solution requirements both now and in the future.

OCIENT'S FIT TO DISA'S DATA STRATEGY

LINE OF EFFORT #1

DATA ARCHITECTURE

- DISA wishes to support data assets through their entire life cycle
- Data life cycle needs to be understood in context of the volume, richness, and time-criticality of said data
- Larger datasets will be more complex to support, may need special tools to extract full value
- Some datasets lose value as they age
- The right architecture can help with all of this!

(OCIENT)*

WORKLOAD MANAGEMENT ALLOWS SEAMLESS RESOURCE SHARING ENABLE COLLABORATION WITHOUT

IMPACTING MISSION CRITICAL ACTIVITIES

ТҮРЕ	CORES
scheduling_priority	The priority given to queries when executing. This is a proxy for how much CPU time a query receives relative to other queries.
max_concurrent_queries	Maximum number of concurrent queries running for the service class.
max_elapsed_time	The max time a query can run in seconds.
max_temp_disk_usage	Max percentage of temp disk that a query can use when spilling intermediate result sets to disk.
max_rows_returned	Maximum rows that may be returned for a query.
result set caching	Size and duration of query results to ensure sub-second results

High Priority Service Class www www www Inventory Campaign Campaign PMP Deal Forecast + Exec Analysis Troubleshooting Price Curve Service API API Medium Priority Service Class Spark \bigcirc Bid Shading ML Model Nightly + Freq Training & Inventory Capping Verification Analysis Analysis Lower Priority Service Class 200 $\sqrt{1}$ AdHoc Queries Realtime Monitoring **Bidding Ops** Fraud Detection Partner Data **Delivery Analysis** Analytics Extracts

Ocient Proprietary and Confidential

CASE STUDY

LINE OF EFFORT #2

ADVANCED ANALYTICS

- DISA wishes to harness the predictive power of data
- Accurate predictions depend on access to fullresolution data
- Increasingly, this will mean hyperscale operations
 on exotic data types
 - Trillions of records
 - PBs of data
- Oh, and make it all ML-ready
- Ocient delivers interactive-time results on these workloads

(OCIENT)**

MEASUREMENTS FROM PROOF OF TECHNOLOGY SHOCK AND AWE

Metric	Rate	Notes
SQL node returning results	28Gbps x 2 (35% CPU)	Equivalent to ~16TBs an hour outbound
Queries per second	344/sec (20k in 58 seconds)	All 20k views reported in < 1 minute
Filter rate (20 LTS nodes)	1.4T rows/sec	Analyze 4.4 years of flights per second
LAT sustained rate	2.05M rows/sec = 3.5Gbps (53% CPU)	Load 2.5TBs per hour per loader
Concurrent loading and querying	~2.5% increase in query elapsed time loading 2.9M rows/sec vs 0 rows/sec	Compare to other vendors showing 20- 70% query degradation
Multi-column sorted aggregate at scale	Return min, max, avg speed/altitude across 3.6B records in 0.5 seconds	Profile worldwide flight points across 8 days in 1 second
Efficient row removal	Delete ~4 trillion rows = 8 seconds	Wipe 1.6 years of flights in a second

Assume 10k aircraft in the air sending data every second

"Use, reproduction, or disclosure is subject to restrictions set forth in Contract Number 2014-14031000011 and Sub Contract No. Ocient 01." / Ocient Proprietary

CUTTING-EDGE GEOSPATIAL ANALYTICS

> 120 UNIQUE FUNCTIONS

NATIVE GEOSPATIAL AND COMPLEX COLUMN TYPES

- Geospatial Types
 - Points
 - LineStrings
 - Polygons
- Complex Types
 - Arrays
 - Tuples
- Standard latitude/longitude WGS84 Ellipsoid model

NATIVE GEOSPATIAL FUNCTION SUPPORT

- 120+ Geospatial functions
- Based on Non-Euclidian Spherical Geometry
 - Leads to minimal distortion vs projections
- In-Database Machine Learning
- Unique Spatiotemporal functions answer when and where

- Enabling organizations to store and analyze geospatial data at hyperscale natively in Ocient
- Enabling analysis of streaming geospatial data that is queryable seconds after ingest
- Enable complex analysis with numerous native Geospatial functions
 - ST_CONVEXHULL
 - ST_PROJECT
 - ST_CLUSTERDBSCAN
 - ST_INTERSECTION
 - 100+ more

(O C I E N T)[™]

MACHINE LEARNING IN PLACE

ENABLING HYPERSCALE MACHINE LEARNING

TRAIN IN PLACE

 Train ML models without moving data, enabling larger training sets and better data security.

• Choose and customize data analysis using a large toolbox of ML algorithms in multiple categories:

Regression	Simple Linear, Multiple Linear, Polynomial, Linear Combination, Logistic, Nonlinear
Classification	K-Means Clustering, K Nearest Neighbor, Naïve Bayes, Feedforward Neural Network, Decision Tree, Support Vector Machine, Gaussian Mixture Models
Feature Engineering	Principal Component Analysis, Linear Discriminant Analysis

• EVALUATE AT LOAD (FUTURE)

Evaluate trained ML models at load time as part of an ETL pipeline. Classify, filter, and/or enrich streaming or batch loaded data in one step.

UNIFY OLAP SQL AND ML

 ML as a first-class citizen in the database enables full expressivity of SQL for data analysis with ML and linear algebra mixed in

SAMPLE USE CASES

NETWORK TRAFFIC ANALYSIS

SEARCH AND ANALYZE YEARS OF NETWORK METADATA

- Built-in support for IP address data types
- Support for Netflow/IPFIX records
- Existing integrations with top probe vendors such as Gigamon, SS8, NetQuest
- Scalable ingest to handle millions of records/sec
- Interactive-time query processing can handle comparisons across years of cyber data
- Built-in ML enables rapid model iteration and fullresolution training to enable accurate predictive analytics

CJADC2

DIGITAL WARFARE IN THE 21ST CENTURY

- Digital sensors will be ubiquitous in the battle space
- Every asset generates data
- Data will be used for real-time decision making (query performance is a matter of life and death)
- Data will also be used for historical analysis, after-action reports, and refining tactics
- This will rapidly lead to trillions and possibly quadrillions of data points which will need to be analyzed
- DoD needs a data analytics solution that:
 - Can scale to 10 PB+ and quadrillions of data points
 - Offers unparalleled query performance and supports complex data types
 - Offers low TCO

QUESTIONS?

DIFFERENTIATED CAPABILITIES

OCIENT DELIVERS BEYOND ALTERNATIVES

(O C I E N T)™

Breakthrough Performance

Transform & load data at terabits per second and run queries 10-100x faster

Increased Scale

Reduced

Complexity

single platform

High core count systems that harness petabytes of data / trillions of records

Support multiple workloads

and concurrent users from a

New Hyperscale Capabilities

ETL/ELT plus full ANSI SQL plus Geospatial plus Al/ML all at Hyperscale in Near Real Time

Accelerated Deployment

Get to market faster by leveraging Ocient's turnkey solutions on-prem, cloud or in OcientCloud

Lower Cost

Cut costs by 50% or more while upgrading to a modern hyperscale data solution

(OCIENT)[™]

ADDITIONAL OCIENT INFORMATION

Acquisition Contracts and Hardware Options for On Prem deployments

Government Approved Contract Vehicles

https://www.carahsoft.com/ocient

1. NASA SEWP V NNG15SC03B/NNG15SC27 May 01 2015- Apr 30 2025

2. ITES-SW2

W52P1J-20-D-0042 Aug 31, 2020- Aug 30, 2025 *Additional Option Years Available Hardware Options for On Prem Deployments We are strategic partnerships with:

- 1. Ocient Appliance SuperMicro
- 2. DELL
- 3. Hewlett Packard

Please be sure to consult with Ocient to build and confirm the appropriate configurations for the Servers with NVMe drives prior to acquisition.

(OCIENT)**

CONTACT OUR TEAM

BILL MINARCHI / FEDERAL SALES LEADER

<u>bminarchi@ocient.com</u>

(571) 528-3696

JOHN TEMPLE / DOD SALES

jtemple@ocient.com (703) 980 - 5428

ADRIAN BURKE / FEDERAL SOLUTIONS ARCHITECT

aburke@ocient.com (817) 937-4879

TONY IBÁÑEZ / FEDERAL SOLUTIONS ARCHITECT

tibanez@ocient.com (443) 699-3700

