
Nexus + Oracle

Introduction

Controlling advanced accelerated hardware chips, especially NVIDIA GPUs, is critical to
remaining an international leader in innovative technology. Even with control, organizations
that fail to optimize these underlying hardware systems cannot maintain longer-term
competitive advantages. Luckily, the true potential of GPUs remains essentially untapped.

Achieving peak GPU performance has eluded even the most advanced companies due to
the current limitations in managing and manipulating how data flows and threads execute on
these GPUs. These limitations present a tremendous opportunity that Arc Compute aims to
harness with its ArcHPC software suite.

Table of Contents
Foundational Concepts
What You’ll Learn
Introduction
Case Studies

ArcHPC Nexus
A100
PoC 5 Results

Industry Problem
Impact of Problem
Summarization of Root Problem
Defacto Industry Solutions
ArcHPC Suite
Methodology of Solving the Problem
Benefits of ArcHPC Suite
Interoperability Overview
Questions

Everything that occurs on a computer relates back to machine code and that

code moves around based on read and writes.

How code executes.

Example NVIDIA CUDA Kernel; prominent AI/ML chip

There are inherent latencies in all architectures between when data is being

copied, memory access operations, and when it is being “worked” on,

arithmetic operations.

Code is written in siloed and compartmentalized environments.

Team A is building their code to provide X and Team B is building their

code to provide Y and neither of them is working together to contemplate

whether the hardware it's running on will be fully utilized or optimized.

GPUs are designed to maximize throughput for parallel computing.

Code is written as serialized execution so the latency between series of

sequential execution is the most important once resource needs are met.

Foundational Concepts What You’ll Learn

Underutilized GPUs negatively impact performance; it is impossible to

utilize the GPU fully.

GPU(s) have operational performance triggers, which result in the GPU(s)

performing better.

List of optimization points per stage in the process of running a CUDA

Kernel that ArcHPC can manage.

Execution Operations for kernels to complete applications on GPUs are not

rigid but fluid, adaptable and malleable. Achieving complete control over

compute and architecture is attainable with low level solutions to dominate

control of the accelerated hardware.

Process of Running a CUDA Kernel

Stage Optimization Capabilities of ArcHPC

1 CPU sets up initial states on GPU N/A

2 CPU uploads system kernels (malloc/free/memcpy/CNP) to the GPU N/A

3 CPU starts executing the CUDA process N/A

4 CUDA process creates table on CPU of corresponding kernels to run and name those kernels N/A

5 CUDA process performs malloc on the GPU side

By default, CUDA malloc is on stream 0, this is a blocking stream. This stream will cause all kernels to stop running until this is finished. By modifying
the stream that is represented as stream 0 between different VMs allows unoptimized code to run with corresponding code and experience pseudo

syncs on a CPU level. The CPU operates at a faster frequency than the GPU a majority of the time allowing it to finish faster. Longer term we can
allow for FPGAs to perform the pseudo sync as well.

6 CUDA process performs memcpy on the GPU side

By default, CUDA memcpy is on stream 0, this is a blocking stream. This stream will cause all kernels to stop running until this is finished. By
modifying the stream that is represented as stream 0 between different VMs allows unoptimized code to run with corresponding code and

experience pseudo syncs on a CPU level. The CPU operates at a faster frequency than the GPU a majority of the time allowing it to finish faster.
Longer term we can allow for FPGAs to perform the pseudo sync as well.

7 CUDA process uploads kernel to execute to GPU side
The kernel upload operation is intercepted and allocated on the CPU for our own use cases, we can also look at the "calling size" of the GPU kernel.
This allows us to determine the size of the data without requiring us to analyze the data. We experience latency in this stage for the first initial kernel

recording(s) and measurements.

8 CUDA process performs kernel operations Multiple kernels can be concurrently executed. As a kernel experiences a warp stall(s) other kernels can be completed.

9 CUDA process performs memcpy on the GPU side

By default, CUDA malloc is on stream 0, this is a blocking stream. This stream will cause all kernels to stop running until this is finished. By modifying
the stream that is represented as stream 0 between different VMs allows un optimized code to run with corresponding code and experience pseudo
syncs on a CPU level. A CPU operates at a faster frequency than the GPUs majority of the time allowing it to finish faster. Longer term we can allow

for FPGAs to perform the pseudo sync as well.

10 CUDA process analyzes it on CPU side N/A

Summary
of Functions

Capabilities
Code Management
System Management

Abilities
User Defined Rejections
Code

Machine Code Denial
Machine Code Intercept
Machine Code Trap
Machine Code Replace
Machine Code Orchestration

System
System Discovery
System Mapping
System Spoofing
System Compartmentalization

Pe
rfo

rm

ance Resilience

RTOS

Cyber S

ecurit
y

Accelerated AI Training and
Inference
Simulation for advanced
personnel training
Modeling for advanced
component and synthetic
developments
Data analytics

Next Generation
platforms and programs
Resistant to Electronic
warfare
Communication systems
Command and control
systems

Surveillance and
Reconnaissance
Platforms
Guided Missile Systems
Autonomous Vehicles
Radar Systems

Encryption
Code Denial
Machine Code Data
Falsification
Dedicated
Computing and
Memory Pathways

Application
Examples
& Effects

The applications are not limited to what is shown here as examples. Performance figures can be improved with further development.
Current performance figures represent a beta version benchmarking. Further developments have occurred since.

Reduce compute time; AI/ML training
and inference time reduced by 67.5%
Increase user/task density 100% to
400% without performance
degradation

Military Grade Code; Cyber
warfare counter measures.
Military Grade Code; Cyber
warfare resistant code execution.

Task Oriented Power Regulation;
savings of 39%+.
Task Oriented Thermal Regulation.

GPU Anti Virus.
Counter Intelligence; instruction
spoofing and data contamination.

Introducing

Case Studies
Overview

Overview
Arc Compute conducted four experiments to determine whether increasing the throughput to a GPU could boost its performance.
This investigation aimed to activate intrinsic low-level optimization points within the GPU and identify any limitations within our
software. ArcHPC Nexus (Beta version) successfully eliminated inherent obstacles found in NVIDIA's fractional GPU solutions, thus
enabling all Streaming Multiprocessors (SMs) to be fully accessible for tasks that share GPU resources.

Findings
Increasing throughput to a GPU and removing barriers that are found in NVIDIA Fractional GPU solutions increases the
performance of a GPU while increasing user/task density.
With Nexus, compute times for workloads, such as AI/ML training, can be reduced by 28.5% to 67.5% without optimizing the
code for Nexus.
The performance of a GPU can be increased by 140% to 308% using the Nexus.
User/task density can be increased by 100% while increasing performance by 140% to 211%; this results in a 28.5% to 52.6%
reduction in compute time.
Nexus reduces energy consumption for task completion/computations by 13.679% to 38.832%.
There are many more optimization capabilities to increase performance even further, and they're already being worked on by
Arc Compute.

To Discover
Can performance be increased further, and why?

Case Study 1

Performance
Benchmarks

The proof of concept was created to explore both the performance enhancements and limitations of ArcHPC Nexus.
Performance benchmarks were conducted for two distinct types of jobs based on their varying L2 cache requirements: a small
compute job that progressively decreases in size and a large memory compute job that continues to expand. Despite these
changes, the computing operation for each job remained unchanged. The objective was to adjust the L2 cache sizes for these jobs
to identify the points at which performance begins to degrade.

 This approach aims to enable the classification and consolidation of workloads with different GPU compute demands—specifically,
those requiring high compute power versus those with high L2 memory needs—within the same architecture, according to targeted
performance levels. The architecture in question is equipped with a 40GB NVIDIA A100.

The three configurations for the tests performed are the following:

• Job-Big performed on full-passthrough (by itself)

• Job-Small performed on full-passthrough (by itself)

• Job-Small and Job-Big performed on a single GPU using ArcHPC Nexus(both started at the same time and ran on the same GPU)

PoC Description

SGEMM runs multiple times (1024 for compute tasks, 1 for memory tasks). (We use cublas) : C A * B + 0.5

Operation:
Start infinite or measure mode — Upload kernels for A, B, and C — Warm up GPU with C = A * B + 0.5 — Start samples —
Start timer — Run for N iterations: C = A * B + 0.5 — Stop timer — Take average time over the timer — Stop Samples —
Calculate min, max, average and post into a csv file

Case
Configurations

Configuration 1: Job-Big — Passthrough
In this configuration, the Job-Big workload is utilizing a full A100 40GB GPU without the use of ArcHPC Nexus.

Job-Big Workload NVIDIA A100 (40gb) GPU

Configuration 2: Job-Small — Passthrough
In this configuration, the Job-Small workload is utilizing a full A100 40GB GPU without the use of ArcHPC Nexus.

Job-Small WorkloadNVIDIA A100 (40gb) GPU

Configuration 2: Job-Big/Job-Small — Shared
Utilizing ArcHPC Nexus, the Job-Big workload and the Job-Small workload are sharing an A100 40GB GPU with both
jobs running simultaneously.

Job-Small WorkloadNVIDIA A100 (20gb) GPU
(Multiplexed)

Job-Big Workload

Cases Job-Big Matrices Size (mb) L2 Cache Utilization L2 Cache Total (mb)

Case 0 1024 1024 1024 864 10.75 27% 21.50

Case 1 2048 1024 1024 864 18.13 45% 25.19

Case 2 4096 1024 1024 864 32.88 82% 38.09

Case 3 8192 1024 1024 864 62.38 156% 66.67

Case 4 16364 1024 1024 864 121.23 303% 125.07

Job-Big
Results

Compute time is measured in milliseconds per iteration

Job-Big Summary

Cases Idle Compute Performance % (+/-) L2 Cache

Case 0 0.1409 0.1151 144.83% 10.75

Case 1 0.2573 0.2127 141.94% 18.13

Case 2 0.4385 0.4079 115.00% 32.88

Case 3 0.854 0.8079 111.41% 62.38

Case 4 1.6613 3.0672 8.33% 121.23

Case 1 Case 2 Case 3 Case 4 Case 5
0.00%

50.00%

100.00%

150.00%

200.00%
Job-Big Compute Performance Change Using ArcHPC Nexus

Cases Job-Small Matrices Size (mb) L2 Cache Utilization L2 Cache Total (mb)

Case 0 1024 1024 1024 864 10.75 27% 21.50

Case 1 512 1024 1024 864 7.06 18% 25.19

Case 2 256 1024 1024 864 5.22 13% 38.09

Case 3 128 1024 1024 864 4.30 11% 66.67

Case 4 64 1024 1024 864 3.84 10% 125.07

Job-Small
Results

Compute time is measured in milliseconds per iteration

Job-Small Summary

Cases Idle Compute Performance % (+/-) L2 Cache

Case 0 0.1095 0.167 31.14% 10.75

Case 1 0.059 0.0928 27.16% 7.06

Case 2 0.0321 0.0556 15.47% 5.22

Case 3 0.258 0.0535 -3.55% 4.30

Case 4 0.018 0.038 -5.26% 3.84

Case 1 Case 2 Case 3 Case 4 Case 5
-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%
Job-Small Compute Performance Change Using ArcHPC Nexus

Idle Small Idle Big Compute Small Compute Big

Cases Ave Min Max Ave Min Max Ave Min Max Ave Min Max

Case 0 0.110 0.109 0.137 0.141 0.118 0.158 0.167 0.163 0.167 0.115 0.113 0.119

Case 1 0.059 0.059 0.076 0.257 0.214 0.280 0.093 0.088 0.094 0.213 0.209 0.217

Case 2 0.032 0.032 0.041 0.439 0.413 0.532 0.056 0.050 0.056 0.408 0.407 0.413

Case 3 0.026 0.026 0.033 0.854 0.797 1.042 0.054 0.045 0.054 0.808 0.801 2.297

Case 4 0.018 0.018 0.023 1.661 1.600 2.061 0.038 0.029 0.040 3.067 2.047 4.621

Comparing
Results

Compute time is measured in milliseconds per iteration

Cases Small Compute Performance % (+/-) Big Compute Performance % (+/-) Net Performance % (+/-) L2 Cache Total (mb)

Case 0 31.14% 144.83% 88% 21.50

Case 1 27.16% 141.94% 85% 25.19

Case 2 15.47% 115.00% 65% 38.09

Case 3 -3.55% 111.41% 54% 66.67

Case 4 -5.26% 8.33% 2% 125.07

A100 - ArcHPC Nexus Net Performance Increase VS L2 Cache Demand

21.50 25.19 38.09 66.67 125.07
0%

20%

40%

60%

80%

100%

Net Performance Change % (+/-)

Conclusion

Job-Big: Performance
In Configuration 3, the computation time for the workload limited by memory was 0.1151 milliseconds, in contrast to 0.1409 milliseconds when it
used the entire GPU in Configuration 1. Typically, using half the resources in Configuration 1 would result in computation times that are twice as long.
However, this did not happen with ArcHPC Nexus. For the workload cases limited by large memory in Configuration 3, Nexus improved performance
by between +8% and +144%.

Job-Small: Performance
In Configuration 3, the compute-limited workload finished in 0.167 milliseconds, as opposed to 0.1095 milliseconds when the full GPU was used in
Configuration 2. Typically, one might expect Configuration 2 to require double the computation time when provided with half the resources.
However, this expectation does not apply to ArcHPC Nexus. For cases of compute-limited workload in Configuration 3, Nexus varied the
performance, resulting in changes that ranged from a decrease of 5% to an increase of 31%.

Combined Performance
When considering both small compute-limited and big memory-limited workloads in Configuration 3, we observe a significant performance
improvement ranging from +2% to +88% across various cases. This improvement is attributed to the ArcHPC Nexus’ capacity to enhance
performance and optimize operations for better productive use of GPU resources. Nexus demonstrates the potential for different types of workloads
to run on the same GPU, thereby reducing the overall need for hardware by enhancing performance through complete resource utilization.

Reflecting on the outcomes for both the Job-Small and Job-Big, our recommendation is to interleave compute-limited and memory-limited jobs,
utilizing up to 62MB of L2 Cache on an NVIDIA A100 GPU, which typically offers 40MB of L2 Cache. This approach can lead to a performance boost
of up to 54% while achieving 100% utilization of the GPU. It is important to note that performance sharply declines when exceeding three times the
L2 Cache capacity available in the system. Although system specifications and the capabilities of compute chips may vary, it is evident that ArcHPC
Nexus facilitates the consolidation of infrastructure by maximizing performance and ensuring complete utilization of GPU resources.

CPU
Specifications

CPU op-mode(s) 32-bit, 64-bit

Byte order Little Endian

Address sizes 46 bits physical, 57 bits virtual

CPU(s) 80

On-lin CPU(s) list 0-79

Thread(s) per core 2

Core(s) per socket 20

Sockets(s) 2

NUMA node(s) 2

Vendor ID GenuineIntel

CPU family 6

Model 106

Model name
Intel(R) Xeon(R) Gold 5320T CPU @

2.30GHz

Stepping 6

Frequence boost enabled

CPU MHz 800.209

CPU max MHz 3500

CPU min MHz 800

BogoMIPS 4600.00

Virtualization VT-x

L1d cache 1.9 Mi B

L1i cache 1.3 Mi B

L2 cache 50 Mi B

L3 cache 60 Mi B

NUMA node0 CPU(s) 0-19,40-59

NUMA node 1 CPU(s) 20-39,60-79

Vulnerability ltlb multihit Not affected

VulnerabilityL1tf Not affected

Vulnerability Mds Not affected

Vulnerability Meltdown Not affected

Vulnerability Mmio stale data Mitigation; Clear CPU buffers; SMT vulnerable

Vulnerability Retbleet Not affected

Vulnerability Spec store bypass Mitigation; Speculative Store Bypass disabled via prctl and seccomp

Vulnerability Spectre v1 Mitigation; usercopy/swapgs barriers and__user pointer sanitization

Vulnerability Spectre v2
Mitigation; enhanced IBRS, IBPB conditional, RSB filling, PBRSB-elBRS

SW sequence

Vulnerability Srbds Not affected

Case Study 2

Case Study 2
Overview
We increased the sample size repeating the test for Case Study 1, and made improvements to our software’s management of the
GPU to determine if results would improve or degrade.

Summary
The results improved further with an increased sample size.
Increasing throughput to a GPU triggers low-level optimization mechanisms such as memory coalescing, “hot” SMs, and
optimal warp scheduling mitigating thread divergence.
NVIDIA's CuBLAS library also presents opportunities for further scheduling of work. This can be observed in the FFMA (Fused
Multiply-Add) warp stall. To understand this better, compare the latencies involved in moving data within the A100
architecture with the time required to complete an arithmetic operation.
Significant HBM2 to L2 and SM occupancy waste occurs where ArcHPC Nexus is not present to optimize compute
resources. The lack of optimization and compute resource waste is present throughout cases for "Idle Big" and "Idle Small"
when compared to cases where ArcHPC Nexus was optimizing the completion of tasks "Compute Big" and "Compute Small"
concurrently. This shows that HBM2 to L2 and SM occupancy cannot be used to determine compute requirement for tasks;
granular pipeline metrics are more reliable key indicators of resource demands - see table for "Small Kernel" and "Large
Kernel" in conjunction to warp stall table, Chart of SM Utilization for Matrices Experiment and performance results of tests.

To Discover
Can performance be increased further?
Is this applicable across multiple GPUs?
What is the implication if a GPU doesn’t have as much work?
What are the situations that cause an SM to power down?

Cases Job-Small Size (mb)

Case 0 1024 1024 1024 864 10.75

Case 1 512 1024 1024 864 7.06

Case 2 256 1024 1024 864 5.21

Case 3 128 1024 1024 864 4.29

Case 4 64 1024 1024 864 3.83

Case 5 64 1024 1024 864 3.83

Case 6 64 1024 1024 864 3.83

Case 7 64 1024 1024 864 3.83

Case 8 64 1024 1024 864 3.83

Case 9 64 1024 1024 864 3.83

Job-Small & Big
Results

Compute time is measured in milliseconds per iteration

Cases Job-Big Size (mb)

Case 0 1024 1024 1024 864 10.75

Case 1 2048 1024 1024 864 18.12

Case 2 4096 1024 1024 864 32.87

Case 3 8192 1024 1024 864 62.37

Case 4 16364 1024 1024 864 121.23

Case 5 32728 1024 1024 864 239

Case 6 65456 1024 1024 864 475

Case 7 130912 1024 1024 864 946

Case 8 261824 1024 1024 864 1889

Case 9 523648 1024 1024 864 3775

Job-Small & Big
Summary

Compute time is measured in milliseconds per iteration

Job-Small Summary

Cases Idle Compute Performance % (+/-) L2 Cache L2 Cache Utilization

Case 0 0.1422 0.1136 150.3521127% 10.75 27%

Case 1 0.0888 0.0655 171.1450382% 7.06 18%

Case 2 0.0571 0.048 137.9166667% 5.21 13%

Case 3 0.0474 0.0335 182.9850746% 4.29 11%

Case 4 0.0347 0.0226 207.0796460% 3.83 10%

Case 5 0.0346 0.0225 207.5555556% 3.83 10%

Case 6 0.0349 0.0227 207.4889868% 3.83 10%

Case 7 0.0348 0.0227 206.6079295% 3.83 10%

Case 8 0.0348 0.0227 206.6079295% 3.83 10%

Case 9 0.0348 0.0227 206.6079295% 3.83 10%

Job-Big Summary

Cases Idle Compute Performance % (+/-) L2 Cache L2 Cache Utilization

Case 0 0.1532 0.1138 169.2442882% 10.75 27%

Case 1 0.2664 0.212 151.3207547% 18.12 45%

Case 2 0.4731 0.4078 132.0255027% 32.87 82%

Case 3 0.8538 0.8069 111.6247366% 62.37 156%

Case 4 1.6677 2.0455 64.0603764% 121.23 303%

Case 5 3.2037 4.403 45.5235067% 239 598%

Case 6 6.3065 8.8414 42.6584025% 475 1187%

Case 7 12.4931 17.6131 41.8614554% 946 2366%

Case 8 24.9244 35.4783 40.5050411% 1889 4723%

Case 9 49.6432 71.0849 39.6729826% 3775 9437%

Job-Big & Small
Performance VS L2 Cache

Job Small/Compute Limited Performance vs L2 Cache (Case 0 to Case 9)

10.75 5.21 3.83 3.83 3.83
0.00000

50.00000

100.00000

150.00000

200.00000

250.00000

Job Big/Memory Limited Performance vs L2 Cache (Case 0 to Case 9)

10.75 32.87 121.23 475.00 1889.00
0.00000%

50.00000%

100.00000%

150.00000%

200.00000%

Chart of SM Utilization for Matrices Experiment - Case by Case

Job-small Summary

Idle Big/Jb pass (Memory Limited) Idle Small/Js pass (Compute Limited)
Compute Big/Jb time when shared

(Memory Limited)
Compute Small/Js time when shared

(Compute Limited)

Case 0

SM Utils SM Utils SM Utils SM Utils

82% 82% 54% 44%

HBM2 to L2 Bandwidth HBM2 to L2 Bandwidth HBM2 to L2 Bandwidth HBM2 to L2 Bandwidth

8% 8% 2% 1%

Case 1

SM Utils SM Utils SM Utils SM Utils

89% 73% 58% 40%

HBM2 to L2 Bandwidth HBM2 to L2 Bandwidth HBM2 to L2 Bandwidth HBM2 to L2 Bandwidth

8% 7% 2% 2%

Case 2

SM Utils SM Utils SM Utils SM Utils

93% 70% 71% 27%

HBM2 to L2 Bandwidth HBM2 to L2 Bandwidth HBM2 to L2 Bandwidth HBM2 to L2 Bandwidth

13% 7% 6% 2%

Case 3

SM Utils SM Utils SM Utils SM Utils

96% 60% 82% 16%

HBM2 to L2 Bandwidth HBM2 to L2 Bandwidth HBM2 to L2 Bandwidth HBM2 to L2 Bandwidth

46% 6% 29% 6%

Case 4

SM Utils SM Utils SM Utils SM Utils

97% 50% 90% 8%

HBM2 to L2 Bandwidth HBM2 to L2 Bandwidth HBM2 to L2 Bandwidth HBM2 to L2 Bandwidth

85% 6% 60% 5%

Case 5

SM Utils SM Utils SM Utils SM Utils

98% 48% 76% 22%

HBM2 to L2 Bandwidth HBM2 to L2 Bandwidth HBM2 to L2 Bandwidth HBM2 to L2 Bandwidth

15% 6% 12% 3%

Job-Big & Small
Performance VS L2 Cache

Case # Small Kernel Large Kernel

0 ampere_sgemm_128x32_nn ampere_sgemm_128x32_nn

1 ampere_sgemm_128x32_nn ampere_sgemm_128x32_nn

2 ampere_sgemm_64x32_sliced1x4_nn ampere_sgemm_128x32_nn

3 ampere_sgemm_64x32_sliced1x4_nn ampere_sgemm_128x32_nn

4

ampere_sgemm_64x32_sliced1x4_nn

ampere_sgemm_128x32_nn+

splitKreduce_kernel

5

ampere_sgemm_64x32_sliced1x4_nn

ampere_sgemm_128x32_nn+

splitKreduce_kernel

6

ampere_sgemm_64x32_sliced1x4_nn

ampere_sgemm_128x32_nn+

splitKreduce_kernel

7

ampere_sgemm_64x32_sliced1x4_nn

ampere_sgemm_128x32_nn+

splitKreduce_kernel

8

ampere_sgemm_64x32_sliced1x4_nn

ampere_sgemm_128x32_nn+

splitKreduce_kernel

9
ampere_sgemm_64x32_sliced1x4_nn

ampere_sgemm_128x32_nn+

splitKreduce_kernel

Warp Stall Deadtimes
Between Thread Execution
and Cycles Elapsed During
Memory Access Operations Small Kernel vs Large Kernel

Instructions Clock Cycles
for the (Ampere A100) GPU

Case Study 3

Case Study 3
Overview
We ran multiple tests to determine if the performance increase found in Case Study 1 is capable across
multiple GPUs; this will determine if this solution applies to tasks that require multiple GPUs. We also tested
the implications of insufficient “work” for a GPU.

Summary
ArcHPC Nexus can increase performance across multiple GPUs.
Some tasks are memory-bound and others are compute-bound which affects their completion time.
Being compute-bound and memory-bound is relative.
Having less work for a GPU negatively impacts its performance in completing an arithmetic operation.
Fine-tuning task environment and or inflight kernel modification is crucial to keeping performance in the
compute "Goldilocks Zone"; this is where performance is greater than 100% for fractionalized
accelerated hardware, GPUs.
Working through various task deployment topologies mimicking transitionary superpositioning of tasks
as they are completed, stopped, and started in a real-world environment shows performance remains in
the compute "Goldilocks Zone". ArcHPC Nexus performance and utilization benefits remain consistent.

To Discover
Can performance be increased even further?
How does this translate to a real-world application?

Measured Measured

1) Compute-bound job 1 2c) Compute-bound job 1

1) Memory-bound job 2 2c) Memory-bound job 2

VS

Bare Metal / CUDA Containeres With

Case Study 3:
1

Same jobs are running simultaneously in both scenarios

Measured Measured

2a) Compute-bound job 1 2b) Compute-bound job 1

Memory-bound job 2

With 2 Simultaneous Jobs

2a) Memory-bound job 1

Compute-bound job 2

2b) Memory-bound job 1

VS

Bare Metal Full GPU

Case Study 3:
2b

Two identical jobs are running simultaneously with job 2 using less resources

Bare Metal Full GPU

Measured Measured

Measured Measured

2a) Compute-bound job 1 2a) Memory-bound job 1

VS

Case Study 3:
2a

Two identical jobs, one utilizing a whole GPU, the other utilizing two half GPUs simultaneously

With 2 half GPUs and no task running on the other side

Measured Measured

2a) Compute-bound job 12a) Memory-bound job 1

Bare Metal Full GPUBare Metal Full GPU

No job running No job running

VS

Case Study 3:
2c-1

Two identical jobs are running simultaneously

Measured

2c) Compute-bound job 1

2c) Memory-bound job 2

With

Measured Measured

2a) Compute-bound job 12a) Memory-bound job 1

Bare Metal Full GPUBare Metal Full GPU

Measured

2c) Compute-bound job 1

2c) Memory-bound job 2

With

Staggered/delayed job start (0 ms) Staggered/delayed job start (0 ms)

VS

Case Study 3:
2c-2

Measured

2c) Compute-bound job 1

2c) Memory-bound job 2

With

Measured Measured

2a) Compute-bound job 12a) Memory-bound job 1

Bare Metal Full GPUBare Metal Full GPU

Measured

2c) Compute-bound job 1

2c) Memory-bound job 2

With

Staggered/delayed job start (1 ms) Staggered/delayed job start (1 ms)

Two identical jobs are running simultaneously

VS

Case Study 3:
2c-3

Measured

2c) Compute-bound job 1

2c) Memory-bound job 2

With

Measured Measured

2a) Compute-bound job 12a) Memory-bound job 1

Bare Metal Full GPUBare Metal Full GPU

Measured

2c) Compute-bound job 1

2c) Memory-bound job 2

With

Staggered/delayed job start (5 ms) Staggered/delayed job start (5 ms)

Two identical jobs are running simultaneously

Case Study 4

Discovery

Proposal

Arc Compute engaged in discussions with the director of AI/HPC infrastructure of a leading
AI/ML company, focusing on the challenges of improving utilization within their HPC
environment. Low GPU utilization was a primary issue within the company's AI infrastructure,
and proper job scheduling utilizing SLURM wasn't a sufficient fix. Having failed to resolve this
problem up to this point, Arc Compute piqued the director's interest with a software solution
that could drastically improve VRAM allotment and SM utilization.

Impact
The proposition was met with enthusiasm from the AI/ML company, as
Arc Compute demonstrated how ArcHPC Nexus could significantly
accelerate LLM training and inference times. Furthermore, this
solution offers improvements in performance per watt, contributing to
a considerable decrease in both the carbon footprint and overall
energy usage from a supply, operational, and scaling perspectives.
Impressively, these advantages are obtainable without necessitating
any optimizations of the company's code for Nexus.

To counter these challenges, Arc Compute proposed the implementation of ArcHPC Nexus, a tailored solution aimed at boosting GPU
performance. Nexus enhances thread execution per clock cycle, optimizes task compute environments, and increases user/task
density. Nexus uniquely facilitates the concurrent running of two tasks, thereby enabling additional arithmetic operations during
memory access operations of other tasks. This method of task execution not only optimizes GPU throughput but also ensures tasks
are processed together, diverging from the company's existing architecture of isolated compute environments. This leads to quicker
task completion times while simultaneously reducing the need for extensive infrastructure.

1A1 1A2

Completion time 424 Completion time 394

2A1

Completion time 241 / Time saved 153

2B2

Completion time 303 / Time saved 121

28.5% Reduced
Training Time

38.8% Reduced
Training Time

1B1

Completion time 183 / Time saved 241

56.8% Reduced
Training Time

1B2

Completion time 128 / Time saved 266

67.5% Reduced
Training Time

1A1 - 1A2 2A1 - 2B2 1B1 - 1B2
0%

50%

100%

150%

200%

250%

300%

350%

Steady State

Results
Increase GPU performance 1.4x to 3x
Increased user/task density by 100%; reduced infrastructure need by 50%
Reduce energy expenditure between 13.679% to 38.832%
Reduce compute time between 29% to 67.5%

Pe
rf

or
m

an
ce

 (%
)

Training of LLAMA Model
https://github.com/OpenAccess-AI-Collective/axolotl

No changes to code. Trained as is. Variation are solely configurations of hardware

Legacy Deployment Next Gen. - ArcHPC Nexus

Transition

Training Executing Concurrently
67.5% Reduced

Training Time

56.8% Reduced
Training Time

28.5% Reduced
Training Time

38.8% Reduced
Training Time

1A1 1A2 2A1 2B2 1B1 1B2

No ArcHPC Nexus No ArcHPC Nexus ArcHPC Nexus ArcHPC Nexus ArcHPC Nexus ArcHPC Nexus

BFLOAT16 FP16 BFLOAT16 FP16 BFLOAT16 FP16

Batch Size 16 Batch Size 32 Batch Size 16 Batch Size 32 Batch Size 16 Batch Size 32

2 GPUs 2 GPUs 4 GPUs 4 GPUs 4 GPUs 4 GPUs

A100 40gb SXM A100 40gb SXM A100 40gb SXM A100 40gb SXM A100 40gb SXM A100 40gb SXM

Full Pass Through Full Pass Through
Half per GPU (20gb each GPU)

4 X 20gb
Same VRAM as 2 full GPUs

Half per GPU (20gb each GPU)
4 X 20gb

Same VRAM as 2 full GPUs

Half per GPU (20gb each GPU)
4 X 20gb

Same VRAM as 2 full GPUs

Half per GPU (20gb each GPU)
4 X 20gb Same VRAM as 2 full

GPUs

Sole Task Running Sole Task Running

2B2 Running on other half
Two tasks running performing
double the work as 1A1 code

not optimized for ArcHPC

2B2 Running on other half
Two tasks running performing
double the work as 1A1 code

not optimized for ArcHPC

Sole task running
Code not optimized for

ArcHPC Nexus

Sole task running
Code not optimized for

ArcHPC Nexus

Completion Time (Minutes) Completion Time (Minutes) Completion Time (Minutes) Completion Time (Minutes) Completion Time (Minutes) Completion Time (Minutes)

424 394 303 241 183 128

N/A N/A Compared to 1A1 Compared to 1A2 Compared to 1A1 Compared to 1A2

Time Saved Time Saved Time Saved Time Saved

121 153 241 266

Performance Performance Performance Performance

140% 163% 232% 308%

ROI per ($) spent ROI per ($) spent ROI per ($) spent ROI per ($) spent

2.798679868 3.269709544 2.316939891 3.078125

kWh Usage kWh Usage kWh Usage kWh Usage kWh Usage kWh Usage

5.65 5.25 4.04 3.21 4.88 3.41

($) Savings Per kWh ($) Savings Per kWh ($) Savings per kWh ($) Savings per kWh ($) Savings per kWh ($) Savings per kWh

N/A N/A 28.538% 38.832% 13.679% 35.025%

Training of LLAMA Model
https://github.com/OpenAccess-AI-Collective/axolotl

No changes to code. Trained as is. Variation are solely configurations of hardware

Why ArcHPC?

Intercepts kernel dataa.

Required to know the type of binary which is being run on the GPU.i.

Allows for the creation of antivirus for GPUs.ii.

Custom GPU selector APIsb.

Allows for sysadmins to create their APIs for how to select a GPU on a cluster.i.

Predefined selectors allow for information to be added to justify thermal limits or power draw limits on the

edge/green datacenters.

ii.

Databinning rules allow for datacenter/cluster administrators to ensure allocatable rules are not deleted.iii.

Custom Kernel Extraction APIc.

Extracting a CUDA kernel can be sent through a user-defined kernel extraction API.i.

Allowing for the preemption of kernel modules based on the VM's priority.ii.

Can provide mechanisms for restructuring the kernel into several components to run.iii.

Custom in VM pluginsd.

Users can create their plugins for the use of updating/providing inter-VM communications.i.

Custom GPU Communication APIe.

Provide a custom mechanism for communication to and from the GPU on each task

(encryption/compression)

i.

Problems

Industry
Problem

Scarcity of GPU resources

Underutilized GPU investments

Long compute times when working with large amounts of data

Increasing energy demand to power compute environments

Hardware limitations struggling to keep up with software demand

Mix and match GPU products to meet the demand

Impact of
Problem

Slower product rollouts and software advancement​

Difficulty keeping pace with larger entities that command more GPU allotments from vendors​

Displeasure among employees who have work impacted due to limited computing resources​

Difficulty justifying additional HPC investments while current resources are under-utilized​

Summary of
Root Problem

Even the most optimized code has latencies during memory access operations​
Missed opportunities to execute additional arithmetic operations during memory access
operations impact GPUs negatively​
Current GPU management solutions cause slowdowns when revealing all compute resources
to tasks running concurrently on the same hardware, and are limited to splitting tasks/users
across single GPUs​
Current solutions that can split single GPUs for concurrent task execution across the entire
resource are difficult to use and do not innately work with prominent job schedulers ​
Current GPU management solutions cannot granularly administer compute resources perfectly
to calibrate and tune the most optimal compute environment for instruction execution ​

DEFACTO SOLUTIONS PROS CONS

Job schedulers Widely available
Easy to use

Cannot address root problem
Can degrade performance
Cannot granularly manage compute environments
Cannot set or prioritize performance for business
objectives

Manual task matching

Addresses root problem
Increases performance of
accelerated hardware
Full control of code
optimization cycle

Reliant on ability to acquire human capital capable of
low-level coding and translating between various
hardware architectures
Not scalable
Time intensive process
Limited to human capabilities
Cannot address changes to business objectives or
operations on the fly
Bureaucratic red tape to execute
Limits production code update potential for product
managers and software developers
Process must be restarted for broad updates
Security posture only as strong as the weakest task

Defacto
Industry

Solutions

NVAIE/VGPU MPS JIT Linking
Fractional

timesliced GPUs
MIG

Only works on server architectures X X X X X

Does not provide kernel use data so cannot use to determine drain
on the GPUs X X X X X

Cannot predict what the current power draw/thermal increase X X X X X

Cannot preempt lower priority kernels X X X X X

No selection of the best GPU to use X X X X X

Does not fix the null stream problem X X X

Only time-sliced solutions X

Cannot integrate with common job schedulers like SLURM X

Requires both CUDA programs to be compiled with a specific flag X

Cannot increase/decrease to accommodate workload requiring
higher capabilities on the engineerings side X

Limitation of
Other

Solutions

The Effect

Nexus
Creates the environment to maximize utilization and performance
Manages the HPC environments
Increases throughput enabling users to increase user/task density
Manages multiple accelerator types simultaneously

Oracle
Automates task matching and task deployment
Manages low-level operational execution of instructions in the
HPC environment
Increases accelerated hardware performance through enterprise
scalable control

ArcHPC Nexus

User Group 2

AI Compute Tasks

User Group 3

Physics Simulations
Compute Tasks

User Group 1

GPU Servers

ArcHPC Oracle (Automated Task Matching)

Suite

Tasks Completed

100% 5X 1/6

Utilization of
GPU Resources

Boost to GPU
Performance

Hardware
Requirements

up to up to as low as

OracleMemory Access

Oracle

T
A
S
K

T
A
S
K

T
A
S
K

T
A
S
K

T
A
S
K

T
A
S
K

T
A
S
K

ArcHPC Oracle can pair, match tasks, and stagger kernel execution
times using the information intercepted from machine codes.

Kernel Execution

Kernel Execution

Kernel Execution

Intercept Machine Code

Load Stage Instructions Accelerated Hardware

ArcHPC Nexus intercepts machine code at the load stage dedicated to
the accelerated hardware (NVIDIA, AMD, etc.).

Idenfity

Instruction Type

Data Size

Nexus

ArcHPC Nexus becomes aware of the instructions for execution and the
data size, but not the data contents.

Machine Code Data

Saved to Host Memory

The source code is saved to the host memory, independent of ArcHPC
Nexus's operation. ArcHPC Oracle accesses the host memory (CPU).

The ArcHPC
Method

Following the ArcHPC method, a performance increase is seen even for HBM-bound tasks.
Think of ArcHPC Oracle as an air traffic controller at an airport for instructions; it makes sure that instructions don’t impede each other's execution and this

results in an increase in the performance of GPUs reducing compute time and increasing user density from 100% to 300%.

Machine Code data

Benefits of
ArcHPC Suite

Maintain processor uptime by memory-level parallelism​

Fine-tuning in the GPU task environment for minimum and maximum compute times at

intersection points​

Maximizing the optimal thread arrangement​

Optimizing warp scheduling​

Integrates with job schedulers​

Machine code analysis​

Complementary machine code pairing​

Automated task matching and task deployment​

Understanding of accelerated hardware latencies​

Ability to adjust the performance of tasks in real-time based on business objectives

Interoperability Overview

AI Training Task
(Req. 2 GPUs)

AI Training Task
(Waiting)

AI Training Task
(Waiting)

AI Training Task
(Waiting)

Common Siloed Infrastructure

GPU Servers for Inference (2/4 active)

GPU Servers for Training (2/8 active)

AI Training Tasks in Queue

75% GPU Resource Wasted

AI Inference Tasks

AI Inference Task
(Req. 0.5 GPUs)

AI Inference Task
(Req. 0.5 GPUs)

AI Inference Task
(Req. 0.5 GPUs)

AI Inference Task
(Req. 0.5 GPUs)

50% GPU Resource Wasted

 Infrastructure

AI Training Task
(Req. 2 GPUs)

AI Training Task
(Req. 1 GPUs)

AI Inference Task
(Req. 0.5 GPUs)

GPU Servers for Training & Inference (6/6 active)

AI Inference Tasks

AI Inference Task
(Req. 0.5 GPUs)

AI Inference Task
(Req. 0.5 GPUs)

AI Inference Task
(Req. 0.5 GPUs)

AI Training Task
(Req. 2 GPUs)

AI Training Task
(Req. 1 GPUs)

AI Training Tasks

100% GPU Resource Utilized

Applications

Applications Operational Performance
Thermodynamic Regulation
Power Regulation
Performance Regulation
Priority System

Accelerated Hardware Cyber Security
System Control

Databinning
Pseudo Hardware “Hardware spoofing”

RTOS / Pre-emptive
User Defined Governance and Policy
Management
Firmware Kernel

Real World Applications
(Examples)

Real World
Applications

RTOS and Performance
Solar-powered edge devices providing critical information need to maintain operations even during phases or stages where the power supply is
limited.

In this case for Performance Regulation and Power Regulation, the following abilities are used:
[System Discovery, Code Denial and User Defined Rejections].

Accelerating AI Advancement and Performance
New weapons are detected, and AI defence systems need to be quickly updated to maintain a tactical edge; the AI defence system requires
training quickly and moved to top priority.

In this case for Performance Regulation, Priority System, the following abilities are used:
[Code Trap, Code Replace, Code Intercept, Code Orchestration, System Mapping, System Spoofing and System Compartmentalization].

Cyber Security
A military or intelligence team wants to inject an AI tool into a system but not be compromised during the connection or duration that it is
connected; the security team must secure the system so unauthorized code cannot be run.

In this case for Accelerated Hardware Cyber Security, the following abilities are used:
[Code Denial, Code Intercept, Code Trap, Code Replace, Code Orchestration, System Compartmentalization and System Spoofing].

Encryption, Cyber Security and Performance
An intelligence agency wants to inject counterintelligence or bad data by planting a compromised device; they have to ensure the data is believed.

In this case for Pre-emptive and Firmware Kernel the following abilities are used:
[Code Trap, Code Replace, Code Intercept, Code Orchestration, System Mapping, System Spoofing and System Compartmentalization].

Questions

