
Secure Communications for Quantum and Beyond:

Orchestrated Cryptography for Agility and Policy

Chris Cap, Scott Kawaguchi, Joey Lupo, Chris Trinidad

© QuSecure, Inc, November 2023

Abstract

Organizations across the public and private sectors depend on the abil-
ity to securely communicate data over computer networks. By Shor’s
algorithm, a quantum computer of sufficient size can efficiently break
public-key algorithms such as RSA, ECDH, and ECDSA which secure
these network communications today. As a result, organizations will need
to replace all instances of vulnerable cryptography to protect their own
and their customers’ data-in-transit. In this paper, we describe how a
decentralized cryptography deployment model complicates the migration
to post-quantum and cryptography management more broadly. We then
explain how QuSecure is developing a new paradigm of cryptographic
orchestration with QuProtect� to empower organizations to secure their
networks and meet challenges of agility and policy at scale in a dynamic
ecosystem of new algorithms, attacks, standards, and requirements.

1 Introduction

Since its advent in the seminal 1976 paper “New directions in cryptography”
by Diffie and Hellman [1], public-key cryptography has enabled secure commu-
nications across untrusted networks. Alice can send her public key to Bob to
establish a secure channel even if Eve is privy to all messages sent across the
network. More advanced applications of public-key cryptography can establish
a secure channel even if Mallory can arbitrarily insert, drop, or alter messages.
Organizations within the public and private sectors already rely on hostile or
untrusted networks such as the Internet to communicate sensitive data between
services, devices, and people. Trends such as the Internet of Things (IoT), re-
mote work, and bring your own device (BYOD) mean other untrusted networks
such as mobile 4G/5G/LTE and public Wi-Fi increasingly carry sensitive traffic
as well. Furthermore, zero-trust architectures which assume all networks are
untrusted are gaining traction in government and industry.

A sophisticated adversary has a number of techniques to surreptitiously
collect, block, inject, or otherwise tamper with data-in-transit. The princi-
pal tool in the security toolbox for protecting the confidentiality, integrity,

1

and authenticity of data sent over a network is a secure channel proto-
col. Examples include Transport Layer Security (TLS), Internet Protocol Se-
curity (IPsec), Secure Shell (SSH), and WireGuard [2]. An adversary equipped
with a cryptographically-relevant quantum computer (CRQC), however, can
break the public-key cryptography which undergirds these secure channel pro-
tocols. Furthermore, encrypted data-in-transit is vulnerable today to quantum
threats via a “store now, decrypt later” attack wherein an adversary collects
encrypted traffic in bulk for the purposes of later decryption with a quantum
computer.

To address the quantum threat, the cryptography community is developing
and testing algorithms which are resistant to quantum computing. So-called
post-quantum cryptography (PQC) is the subject of a process by the
National Institute of Standards and Technology (NIST) to select algorithms for
standardization [3]. Meanwhile, organizations are faced with the monumental
task of migrating all instances of vulnerable cryptography to PQC. QuSecure
is developing a suite of products and protocols to upgrade applications and net-
works to post-quantum while requiring no code changes. At the same time,
we are delivering on a vision of cryptographic orchestration to help organiza-
tions meet challenges of agility and policy at scale in a dynamic cryptographic
ecosystem.

In Section 2, we define cryptographic agility and explain its critical impor-
tance in securely navigating the migration to PQC and in future migrations. We
also outline the deprecation difficulties and downgrade attacks which complicate
agility in practice. In Section 3, we look more broadly at cryptographic policy.
In particular, we observe a misalignment between centralized, top-down cryp-
tographic policy and a decentralized, bottom-up deployment model. In Section
4, we draw parallels between the current state of affairs in cryptography with
the state of affairs in networking before the development of software-defined
networking (SDN) and describe how SDN informs the QuProtect architecture.
Section 5 presents QuProtect, which is QuSecure’s post-quantum cryptography
orchestration solution. Section 6 concludes the paper.

2 Cryptographic agility

We can broadly define cryptographic agility to mean the ability to swap out
vulnerable or otherwise non-optimal cryptography with minimal disruption to
the operation of the consuming applications or systems. However, we find the
more granular agility characterizations considered by McGrew in [4, Chapter
3] more useful. In particular, the author subdivides cryptographic agility into
three distinct types, each of which corresponds to a different component of the
cryptography stack which might be found vulnerable:

1. Algorithm agility

2. Protocol agility

3. Implementation agility

2

Algorithm agility refers to the ability to swap out a vulnerable algorithm
within a system with minimal disruption. For example, a system which has
algorithmic agility could easily swap out a weak symmetric cipher such as RC4
with AES, or an insecure hash function such as MD5 with SHA-2. Protocol
agility means the ability to upgrade from a vulnerable protocol version, such
as migrating from TLS 1.0 to TLS 1.3. Lastly, implementation agility means
quickly patching vulnerable algorithm implementations. For example, a software
library may implement an algorithm in a way which is vulnerable to a buffer
overflow or a timing-based side-channel attack.

Agility allows us to future-proof systems against novel cryptanalysis, evolv-
ing adversaries, and implementation errors. In particular, agility implies a
shorter deprecation period, which we understand as the time between (1)
somebody demonstrates a vulnerability in an algorithm, protocol, or implemen-
tation, and (2) all applications or systems which use the vulnerable cryptography
are patched or upgraded. Beyond security, agility also lets us take advantage of
more efficient algorithms or implementations as they become available.

2.1 Agility during the PQC migration and beyond

The ongoing NIST PQC Standardization Process suggests a critical need for
algorithmic and implementation agility. As a study by the European Union
Agency for Cybersecurity (ENISA) report summarizes, “almost all of the post-
quantum cryptosystems submitted to NIST have lower security against the best
attacks known today than against the best attacks that were known in 2017” [5].
New cryptanalysis, side channel attacks, and software bugs have prompted sub-
mission teams to respond with algorithm tweaks, larger key sizes, and software
patches. In several dramatic cases, researchers completely broke a candidate
algorithm. In the third round of the NIST process, researchers found a catas-
trophic key recovery attack against the GeMSS digital signature scheme [6].
In the fourth round, a research team found a catastrophic key recovery attack
against the KEM candidate SIKE which required only a consumer laptop to
execute [7]. To react to this shifting landscape, any PQC solution must able to
rapidly restore secure communications by supporting the ability to swap out a
vulnerable algorithm, increase key sizes, or patch vulnerable implementations.

The migration to PQC, however, is not the first time we have had to up-
grade vulnerable cryptography. Indeed, upgrades from MD5 to SHA-1, SHA-1
to SHA-2, and DES to AES are examples from years past. It is also not likely
to be the last time. At a minimum, algorithms become weaker over time as
computing capabilities improve. Furthermore, it is unlikely that Grover’s and
Shor’s are the only cryptographically-relevant quantum algorithms. Experts
may also develop more efficient post-quantum cryptography over time, just as
was the case when elliptic curve cryptography overtook RSA as the dominant
(pre-quantum) asymmetric primitive. Though we might not be able to antici-
pate what future changes will look like, we can be sure that cryptography will
change over time. Therefore, we must build cryptographic systems which can
adapt and evolve accordingly. In short, they must be agile.

3

2.2 Agility issues in practice

Despite the benefits, agility is difficult to attain. A fundamental obstacle is
the decentralized, fragmented deployment model of cryptography widely used
in practice. For example, eliminating all SHA-1 TLS certificates means tracking
down all SHA-1 certificates on every single endpoint within your network, either
manually or with one-off scripts or discovery tools. Furthermore, cryptography
is usually tightly coupled to applications. Consider, for example, how configur-
ing TLS for an Apache web server with mod ssl differs from deploying Nginx
with TLS, which differs from configuring TLS for Redis, which differs still from
configuring TLS for MongoDB. Though the concepts are similar in each case,
this fragmentation adds friction to upgrade processes for IT teams, especially at
scale. The end result is decreased agility and longer deprecation periods during
which data-in-transit is potentially vulnerable to compromise. As one confer-
ence report noted, “Algorithm elimination is a particularly notable failure in the
industry as long-deprecated standards (e.g., RC4, MD5, DES) continue to be in
use” [8]. In the case of TLS, the deprecation period for vulnerable algorithms
and protocol versions has historically been on the order of years [9].

Another obstacle to agility is that it is often baked directly into a secure
channel protocol by means of a negotiation phase. For example, both TLS and
IPsec—or, more precisely, the Internet Key Exchange (IKE), which is a compo-
nent of IPsec—include a cipher suite negotiation phase. This protocol-centric
view of algorithmic agility is further described in [10]. The story for proto-
col agility is similar; the two parties typically settle on a mutually supported
protocol version within the same negotiation phase.

A couple problems tend to surface with this approach to agility. For one, ne-
gotiation usually translates to additional round trips, adding latency and band-
width to each handshake. Second, negotiation adds complexity to a protocol.
Complexity, in turn, makes security harder to reason about and can introduce
vulnerabilities, especially when we consider a network adversary that can freely
drop, inject, or modify protocol messages. Indeed, the class of downgrade
attacks refers to an active network adversary (also known as a man-in-the-
middle (MITM)) attacking a protocol negotiation phase in a way which results
in the subsequent secure channel or key exchange using weakened or no encryp-
tion. In [11], the authors develop a taxonomy for fifteen distinct downgrade
attacks to vulnerable cipher suites or protocol versions in TLS alone. In [12],
the authors study several downgrade attacks in TLS, IPsec, SSH, and ZRTP.

3 Cryptographic policy

A cryptographic policy can be defined as any organizational policy related to
the use of cryptography. Such a policy might specify permissible algorithms, li-
braries, protocols, key sizes, key rotation strategies, key storage options, entropy
sources, or random number generators for any given application of cryptogra-
phy. A cryptographic policy is usually specified by the CIO, CTO and/or CISO

4

in a document and then implemented by an IT team.
An organization’s cryptographic policy (if one exists) is typically informed

by relevant regulations and compliance regimes. Examples include Federal In-
formation Processing Standards (FIPS) 140-2/140-3, NIST Special Publication
800-53, the General Data Protection Regulation (GDPR), the Payment Card
Industry Data Security Standard (PCI DSS), the Health Insurance Portabil-
ity and Accountability Act (HIPAA), and System and Organization Controls
(SOC). Each of these examples includes guidelines for protecting data-in-transit,
with varying levels of specificity. For example, PCI DSS requires “strong cryp-
tography,” which it defines in terms of algorithms and key sizes [13]. The
most comprehensive standard is FIPS 140-2/3, which specifies compliant algo-
rithms and parameters for symmetric encryption, asymmetric encryption, key
exchange, hash functions, random number generators, and entropy sources [14].

3.1 Policy during the PQC migration and beyond

Given that the current slate of widely used public-key algorithms are vulnera-
ble to quantum threats, any standard or regulation which references vulnerable
algorithms will need to updated. Indeed, any definition for security of data-
in-transit which considers the quantum threat will require a compliant organi-
zation to have completed an upgrade to PQC. Interim requirements are also
likely. Consider, for example, a recent directive by the Biden administration
that instructed federal agencies to inventory all instances of vulnerable cryp-
tography in their IT systems [15]. As a result of these evolving requirements,
organizations will need to update their cryptographic policies accordingly. More
importantly, those policies will need to be implemented by IT teams to satisfy
auditors and meet compliance and certification targets.

As we discussed in Section 2.1, however, the migration to PQC is not the
first or last such transformation of the cryptographic landscape. In the near-
term, consider the likely push for zero-trust architectures, and how this will
exponentially increase the compliance burden by considering communications
within data centers or internal networks to be in-scope. More broadly, orga-
nizations need an ability for agile cryptographic deployments that can support
cryptographic policies downstream from evolving requirements.

3.2 Policy issues in practice

A cryptographic policy is typically a single authoritative reference for an or-
ganization. In other words, a policy is a centralized and top-down construct
originating from the C-suite or a relevant regulatory standard. By contrast, the
actual deployment of cryptography is highly distributed and fragmented. In
other words, managing and implementing cryptography is a decentralized and
bottom-up endeavor for IT teams. In the case of TLS, you need to issue and dis-
tribute a certificate to each service, device, or user that needs one. And this can
only happen after standing up a root certficate authority (CA) and intermediate
CAs to support an internal public-key infrastructure (PKI). Many organizations

5

still manage their certificates with spreadsheets. Virtual private network (VPN)
protocols such as IPsec, OpenVPN, or WireGuard require that someone indi-
vidually configure each peer within the VPN. In SSH, manual configuration
is needed to support public-key-based authentication. This fundamental mis-
match between centralized policy and decentralized implementation is in large
part what makes cryptography difficult to audit, manage, and migrate on an
organizational level.

A consequence of this decentralization is limited visibility. At a basic level,
visibility means knowing which cryptography is in use, and which data it pro-
tects. More concretely, for any given channel which transmits data of a certain
level of sensitivity, what does the cryptographic protection of that channel look
like? Which cryptographic libraries, algorithms, or key sizes are actually used
for any given secure connection? How often are keys rotated and where are they
stored? How are cryptographically secure random numbers generated? The an-
swers to these questions are dispersed in part through the various endpoints
in configuration files or logs. For protocols with a negotiation phase, analysis
of live protocol exchanges over the wire is often the only way to know which
algorithms are actually used for any given connection. Once you have inven-
toried all instances of vulnerable cryptography, now you actually need to make
changes to your system which ensure that those vulnerable instances are no
longer used for data-in-transit. This requires agility, which is similarly affected
by decentralization, as we covered in Section 2.2. In sum, decentralized cryptog-
raphy deployment reduces visibility and agility, making it difficult to support
an evolving cryptographic policy at scale.

4 Parallels with software-defined networking

Before discussing QuProtect, we take a brief detour to the world of computer
networking. We find it useful to draw a comparison between the current cryptog-
raphy ecosystem with the computer networking ecosystem before the develop-
ment of software-defined networking (SDN). Managing a traditional IP network
is a complex, time-intensive, error-prone process that involves manually config-
uring switches, routers, and middleboxes using vendor-specific command-line or
network interfaces. As one data point, consider that the migration from IPv4
to IPv6 has been in progress for over a decade.

The same concepts apply to managing cryptography within an organization.
As we covered Section 3.2, cryptography-related tasks such as setting up and
managing an enterprise PKI or configuring IPsec peers are similarly complex,
time-intensive, and error-prone and involve learning library-, application-, or
vendor-specific configurations to properly deploy. This highly decentralized de-
ployment makes the migration to PQC similar in some respects to the migration
to IPv6.

The insight of SDN is to decouple various layers of the networking stack:
“An important consequence of the software-defined networking principles is the
separation of concerns introduced between the definition of network policies,

6

Figure 1: QuProtect versus traditional cryptography management. The Or-
chestrator exposes an abstract view of the cryptography securing your data to
administrators.

their implementation in switching hardware, and the forwarding of traffic” [16].
These three layers map to an application plane, a control plane, and a data
plane, respectively. The data plane consists of network devices (physical or
virtualized) such as switches and routers which are responsible for the actual
forwarding of data packets through a network. On the other hand, the con-
trol plane consists of a (logically) centralized SDN controller and application
programming interfaces (APIs) to control the behavior of the data plane ele-
ments. Network applications in the application plane such as load balancers
then can make use of the interface exposed by the SDN controller to define the
routing policy without any knowledge of the underlying hardware devices or
any vendor-specific management tool. In other words, network applications can
work at the level of network policy.

The approach QuSecure takes to cryptography, post-quantum or otherwise,
is similar. As we discuss in Section 5, we are developing a solution which decou-
ples the definition of cryptographic policy, the implementation of that policy,
and the actual encryption of traffic. These three layers correspond to our man-
agement plane, control plane, and data plane. Just as a SDN controller presents
an abstracted view of the network, our Orchestrator presents an abstracted view
of the cryptography which secures your network. The Administrative Console
in the management plane interfaces with the Orchestrator to provide a single
pane-of-glass to view and manage the cryptography deployment. In particular,
the Administrative Console works at the level of cryptographic policy. Under
the hood, the control plane ensures this policy is executed by configuring appli-
cations in the data plane that encrypt data and execute post-quantum secure
channel protocols. See Figure 1.

7

Figure 2: QuProtect lifts your network to post-quantum with no code changes
and provides an easy interface for managing cryptographic policy at scale. An
on-premises deployment is illustrated above. Cloud deployment is also available
for the QuProtect Orchestrator.

5 QuProtect cryptographic orchestration

QuSecure applies a comprehensive approach to the problems of cryptographic
agility and policy in the migration to post-quantum cryptography and beyond.
Our basic observation is that the existing enterprise cryptography ecosystem is
too decentralized and fragmented to support evolving algorithms, attacks, regu-
lations, and policies at scale. This solution is encapsulated within QuProtect.
In the following sections, we describe the management, control, and data planes
which comprise QuProtect. See Figure 2 for an example deployment.

5.1 Cryptographic management plane

Within the management plane is a user-facing Administrative Console, in
which administrators can register new endpoints and manage the algorithms
used by those endpoints. In particular, we support total algorithmic agility
via this console. For example, if new cryptanalysis degrades the security of Ky-
ber512 to an unacceptable level, then an administrator can upgrade all channels
currently using Kyber512 to Kyber768 or Kyber1024 with the click of a button.
Similarly, in the unlikely event that Kyber is shown totally broken, then ad-
ministrators can immediately switch all channels using Kyber to BIKE, HQC,
or Classic-McEliece. In short, we reduce the deprecation period for vulnerable
algorithms from months or years to minutes.

The Administrative Console also maintains visibility into the cryptography
used to secure each communication channel within a QuProtected network. This
unprecedented visibility greatly simplifies auditing and compliance tasks for

8

IT teams. Furthermore, failed connections can be detected and pinpointed,
providing insight for IT and security teams. A visual dashboard provides a
birds-eye view of successful and failed connections within the network.

The Administrative Console is intended to work at the level of cryptographic
policy, without exposing any of the low-level implementation details to admin-
istrators. We are continuing to develop this vision to support policies relating
to key rotation times, libraries, and random number generation for all commu-
nications within a QuProtected network.

5.2 Cryptographic control plane

Given a cryptographic policy from the management layer, it is the responsibility
of the control plane to ensure that policy is enforced. Or, viewed from the other
direction, the control plane exposes an interface to the management plane to
manage the cryptography used to secure communications between endpoints.
The primary component of the control plane is a high-availability, (logically)
centralized Orchestrator.

In the case of algorithmic agility, the Orchestrator is responsible for configur-
ing algorithms and key sizes for the data plane elements which actually encrypt
data and execute the secure channel protocols. We use a configuration protocol
for QuProtected endpoints to accomplish this task. This configuration protocol
executes over an independent post-quantum secure channel, which we describe
in further detail in Section 5.3.1. Since we move agility to the control plane, any
downgrade attack from an active network adversary requires compromising this
secure channel, which requires an attack beyond the downgrade attacker threat
model. In any case, if this configuration channel is compromised, a malicious
reconfiguration is an auditable event that can be detected and investigated. We
are continuing to expand the control plane to support a richer cryptographic
policy interface at the management layer, including: pushing updates to data
plane elements for implementation agility, implementing key rotation and man-
agement policies, and setting the source of entropy for keys.

5.3 Quantum-Secure Layer, cryptographic data plane

Recall that in SDN the data plane elements are network devices such as switches
and routers which are responsible for the actual forwarding of packets. In other
words, the data plane is the “dumbest” layer. Applying the analogy to cryptog-
raphy, we consider the data plane components as the secure channel protocols
and the entities executing those protocols. Within QuProtect, we call the data
plane the Quantum-Secure Layer (QSL). We have developed a number of
data plane elements in-house, which we detail next.

5.3.1 PQNoise

To upgrade a network to post-quantum, you have to actually develop or leverage
a post-quantum secure channel protocol. To this end, we have implemented the

9

PQNoise Protocol Framework [17] as the basis for establishing post-quantum
secure channels. PQNoise is a post-quantum adaptation of the Noise Protocol
Framework [18], a framework which has seen use in popular applications such
as WhatsApp end-to-end encrypted messaging and the WireGuard VPN proto-
col. Whereas Noise uses Diffie-Hellman key exchanges as the only asymmetric
primitive, PQNoise uses post-quantum key encapsulation mechanisms (KEMs).

We follow in the spirit of Noise and PQNoise by omitting any in-band
negotiation of cipher suite or protocol version within a QSL protocol hand-
shake. Instead, each party executes the protocol with respect to a control-plane-
configured cipher suite consisting of a static KEM algorithm, an ephemeral KEM
algorithm, an authenticated encryption with associated data (AEAD) (symmet-
ric encryption) algorithm, and a cryptographic hash function. At a high-level,
the static KEM provides a longer term key pair for purposes of authentica-
tion. The use of a KEM for authentication has practical advantages over a
post-quantum digital signature scheme [5, Section 3.1]. On the other hand,
the ephemeral KEM provides forward secrecy to all connections. This prop-
erty means that a future compromise of the static KEM private key has no
implications on the security of past communications.

Executing the protocol with respect to a fixed configuration avoids negotia-
tion overhead and means security is easy to reason about: message formats are
unambiguous, message sizes are deterministic, and the protocol state machine
is a straight line. Furthermore, we avoid the types of downgrade attacks cov-
ered in Section 2.2 and can apply the proofs in [17] to understand the security
guarantees of any given PQNoise instantiation, limiting the need for protocol
agility.

Note that the PQNoise specification permits the use of two different KEMs
to fill the role of static KEM and ephemeral KEM. Importantly, we can exploit
this fact by using two KEMs which depend on substantially different security
assumptions. This configuration provides redundancy for the security of past
data in the case that future cryptanalysis breaks or weakens one of the two se-
curity assumptions. In other words, we avoid a single point of failure. In release
notes, we outline our recommended algorithm profile of the code-based Classic-
McEliece as static KEM and the lattice-based Kyber as ephemeral KEM. This
configuration mirrors PQWireGuard [19], except with the NIST-standardized
Kyber in place of Saber as a lattice-based KEM.

5.3.2 Key distribution center

We employ a high-availability and scalable key distribution center (KDC) to
support centralized generation of high-entropy keys. In particular, the KDC
can integrate with a quantum random number generator (QRNG) or bring-
your-own-entropy via an API. This use case is particularly valuable for IoT
devices that might not have a reliable source of quality entropy.

10

Figure 3: QuProtect Web App Security lifts a web application to post-quantum
with no code changes and no client-side installs.

5.3.3 Proxy Agent

Another important QSL component is the Proxy Agent, which runs on or near
endpoints and serves a couple of roles. The first is to execute PQNoise hand-
shakes with the KDC. In particular, the end result of a PQNoise handshake is
a post-quantum secure channel between the Proxy Agent and the KDC. Sub-
sequent handshakes establish forward-secure shared keys. At this point, we can
use this channel to securely distribute keys from the KDC to the Proxy Agent.

The Proxy Agent additionally includes the capabilities of a reverse proxy.
A reverse proxy is the basis for the cloud-native Istio service mesh [21], and we
have developed the Proxy Agent with a similar deployment model in mind. In
general, the Proxy Agent can upgrade any proxied application to post-quantum.
In the following two sections, we describe how we leverage the Proxy Agent to
upgrade web applications and internal service communications to post-quantum
with no code changes.

5.3.4 Web App Security

Web App Security is a QSL solution that can transparently upgrade a web
application to post-quantum with no code changes or client-side installs. From a
cryptography perspective, we execute an ephemeral KEM exchange over HTTPS
with a browser-based service worker, which proxies web application requests.
See Figure 3. As part of the protocol, the KDC generates and distributes a
high-entropy session secret to both the browser agent and the Proxy Agent.
Each party then derives AEAD (symmetric) session keys from the session secret
for encrypting subsequent communications. Note that “post-quantum” here
should be understood to mean an active classical adversary that will have access

11

Figure 4: QuProtect Network Security lifts service-to-service communications
to post-quantum and zero-trust with no code changes.

to a CRQC in the future. In particular, this adversary models the “store now,
decrypt later” attack which poses a threat to data today.

5.3.5 Network Security

Network Security is a QSL solution designed to transparently upgrade service-
to-service communications at layer 4 or layer 7 to post-quantum with no code
changes. We achieve this goal by placing a Proxy Agent in front of each network
application to apply a uniform layer of encryption, authentication and autho-
rization. See Figure 4. We use the KDC to establish mutual authentication
between the two Proxy Agents and securely distribute a high-entropy session
secret. Each party then derives AEAD session keys from the session secret for
encrypting subsequent communications.

This deployment model of fronting applications with a reverse proxy is known
as a service mesh in the parlance of cloud-native applications. In effect, the
service mesh extracts security-related functionalities from applications, so de-
velopers can focus on developing applications and not worry about encrypting
communications, configuring certificates, or managing keys. In particular, the
service mesh model avoids many of the difficulties noted in Sections 2.2 and 3.2.
A service mesh architecture can support complex deployments of hundreds or
thousands of different services as in a cloud-native or microservices architecture,
in addition to legacy or monolithic applications.

12

6 Conclusion

Organizations across the public and private sectors rely on the ability to securely
communicate data over untrusted networks. Though “untrusted network” his-
torically referred to a public network such as the Internet, a mobile network,
or a public Wi-Fi, the increasingly prevalent zero-trust architecture treats all
networks as untrusted. The quantum threat in this setting is easy to grasp: a
cryptographically-relevant quantum computer can efficiently break the public-
key algorithms which secure data-in-transit. As a result, organizations will need
to upgrade all instances of vulnerable cryptography to support post-quantum
cryptography. Just as there were previous migrations such as MD5 to SHA
and DES to AES, there will be future cryptographic migrations beyond PQC.
Therefore, it is critical that organizations be able to quickly and effectively
respond to new attacks or regulations with cryptographic agility and policy.

In this paper, we argued that the fundamental misalignment between central-
ized, top-down cryptographic policy and decentralized, bottom-up cryptography
deployment in practice complicates attaining agility and policy goals. Next, we
described how QuSecure addresses these problems with the QuProtect orches-
trated cryptography platform. We detailed different components of QuProtect
within the cryptographic management, control, and data planes, and described
future directions for expanding these components to expose a rich policy lan-
guage to administrators and security teams. In sum, we present QuProtect to
meet the quantum threat today, and unforeseen threats tomorrow.

References

[1] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Trans. Inf. Theory, 22(6):644–654, 1976.

[2] Jason A Donenfeld. WireGuard: Next Generation Kernel Network Tunnel. In
NDSS, pages 1–12, 2017.

[3] National Institute of Standards and Technology (NIST). Post-Quantum Cryp-
tography. https://csrc.nist.gov/projects/post-quantum-cryptography.

[4] Engineering National Academies of Sciences and Medicine. Cryptographic Agility
and Interoperability: Proceedings of a Workshop. The National Academies Press,
Washington, DC, 2017.

[5] Daniel J. Bernstein, Andreas T. Hülsing, and Tanja Lange. Post-Quantum Cryp-
tography - Integration study. ENISA, October 2022.

[6] Chengdong Tao, Albrecht Petzoldt, and Jintai Ding. Improved Key Recovery of
the HFEv- Signature Scheme. IACR Cryptol. ePrint Arch., page 1424, 2020.

[7] Wouter Castryck and Thomas Decru. An efficient key recovery attack on SIDH. In
Carmit Hazay and Martijn Stam, editors, Advances in Cryptology - EUROCRYPT
2023 - 42nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part V,
volume 14008 of Lecture Notes in Computer Science, pages 423–447. Springer,
2023.

13

https://csrc.nist.gov/projects/post-quantum-cryptography

[8] David Ott, Christopher Peikert, and et al. Identifying research challenges
in post quantum cryptography migration and cryptographic agility. CoRR,
abs/1909.07353, 2019.

[9] Platon Kotzias, Abbas Razaghpanah, Johanna Amann, Kenneth G. Paterson,
Narseo Vallina-Rodriguez, and Juan Caballero. Coming of age: A longitudinal
study of TLS deployment. In Proceedings of the Internet Measurement Conference
2018, IMC 2018, Boston, MA, USA, October 31 - November 02, 2018, pages 415–
428. ACM, 2018.

[10] Russ Housley. Guidelines for Cryptographic Algorithm Agility and Selecting
Mandatory-to-Implement Algorithms. RFC 7696, November 2015.

[11] Eman Salem Alashwali and Kasper Rasmussen. What’s in a downgrade? A
taxonomy of downgrade attacks in the TLS protocol and application protocols
using TLS. In Security and Privacy in Communication Networks: 14th Interna-
tional Conference, SecureComm 2018, Singapore, Singapore, August 8-10, 2018,
Proceedings, Part II, pages 468–487. Springer, 2018.

[12] Karthikeyan Bhargavan, Christina Brzuska, Cédric Fournet, Matthew Green,
Markulf Kohlweiss, and Santiago Zanella-Béguelin. Downgrade resilience in key-
exchange protocols. In 2016 IEEE Symposium on Security and Privacy (SP),
pages 506–525, 2016.

[13] The Payment Card Industry Security Standards Council. Glossary of
Terms, Abbreviations, and Acronyms. https://www.pcisecuritystandards.

org/wp-content/uploads/2022/04/PCI_DSS_Glossary_v3-2.pdf, 2016.

[14] National Institute of Standards and Technology (NIST). Security requirements
for cryptographic modules: Federal Information Processing Standards publi-
cation 140–142. https://csrc.nist.gov/publications/detail/fips/140/2/

final, 2001.

[15] Justin Doubleday. White house tells agencies to participate in
post-quantum cryptography tests, November 2022. Available at
https://federalnewsnetwork.com/cybersecurity/2022/11/white-house-tells-
agencies-to-participate-in-post-quantum-cryptography-tests/.

[16] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Esteve
Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined networking:
A comprehensive survey. Proceedings of the IEEE, 103(1):14–76, 2014.

[17] Yawning Angel, Benjamin Dowling, Andreas Hülsing, Peter Schwabe, and Flo-
rian Weber. Post Quantum Noise. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, pages 97–109, 2022.

[18] Trevor Perrin and Moxie Marlinspike. Noise Protocol Framework. https://

noiseprotocol.org/noise.html, 2018.

[19] Andreas Hülsing, Kai-Chun Ning, Peter Schwabe, Florian Weber, and Philip R
Zimmermann. Post-quantum WireGuard. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 304–321. IEEE, 2021.

[20] Envoy proxy. https://www.envoyproxy.io/.

[21] Istio service mesh. https://istio.io/latest/about/service-mesh/.

14

https://www.pcisecuritystandards.org/wp-content/uploads/2022/04/PCI_DSS_Glossary_v3-2.pdf
https://www.pcisecuritystandards.org/wp-content/uploads/2022/04/PCI_DSS_Glossary_v3-2.pdf
https://csrc.nist.gov/publications/detail/fips/140/2/final
https://csrc.nist.gov/publications/detail/fips/140/2/final
https://noiseprotocol.org/noise.html
https://noiseprotocol.org/noise.html
https://www.envoyproxy.io/
https://istio.io/latest/about/service-mesh/

A Acronyms

AEAD authenticated encryption with associated data 10

API application programming interface . 7

CA certficate authority . 5

CRQC cryptographically-relevant quantum computer 2

FIPS Federal Information Processing Standards 5

IKE Internet Key Exchange . 4

IoT Internet of Things . 1

IPsec Internet Protocol Security . 2

KDC key distribution center . 10

KEM key encapsulation mechanism . 10

MITM man-in-the-middle . 4

NIST National Institute of Standards and Technology 2

PKI public-key infrastructure . 5

PQC post-quantum cryptography . 2

QRNG quantum random number generator . 10

QSL Quantum-Secure Layer . 9

SDN software-defined networking . 2

SSH Secure Shell . 2

TLS Transport Layer Security . 2

VPN virtual private network . 6

15

	Introduction
	Cryptographic agility
	Agility during the PQC migration and beyond
	Agility issues in practice

	Cryptographic policy
	Policy during the PQC migration and beyond
	Policy issues in practice

	Parallels with software-defined networking
	QuProtect cryptographic orchestration
	Cryptographic management plane
	Cryptographic control plane
	Quantum-Secure Layer, cryptographic data plane
	PQNoise
	Key distribution center
	Proxy Agent
	Web App Security
	Network Security

	Conclusion
	Acronyms

